This paper depicts a self-tuning adaptive control method along with a novel robust procedure to system identification which is applied to a single-phase full-bridge Inverter with LC filter by Pulse Width Modulation (P...
详细信息
This paper depicts a self-tuning adaptive control method along with a novel robust procedure to system identification which is applied to a single-phase full-bridge Inverter with LC filter by Pulse Width Modulation (PWM). Moreover, an LC filter is designed to decrease the disturbing harmonics produced by PWM which, the stability of the filter can be noted as an important issue. On the other hand, a dynamic change of the inverter can lead to instability issues in which the proposed approach can overcome this problem and perform with a great response. Due to the parametric uncertainty on a full-bridge inverter and other disturbing factors, a digital adaptive controller is proposed which is performed by minimum degree pole placement (MDPP) technique combined with improvedexponentialregressiveleastidentification (IERLS) algorithm. To prevent the undesired influences of high variance noises and disturbance on the performance of the identification approach, a robust identificationalgorithm is introduced which is capable of keeping the parametric estimation process in a desired range. Additionally, to deal with the variations of supply DC voltage, a proportional-integral-derivative (PID) controller is designed. Finally, the experimental and simulation results are performed by Matlab-Simulink to show the validation of the work.
The design of an on-line generalised predictive control (GPC) technique with a novel identification method is presented in this paper for a single-phase full-bridge inverter in the presence of different disturbances. ...
详细信息
The design of an on-line generalised predictive control (GPC) technique with a novel identification method is presented in this paper for a single-phase full-bridge inverter in the presence of different disturbances. The controller uses system discrete-time model to reach the control variables with a prediction over these values, followed by computing a cost function for control aims. However, in this controller, the need for the mathematical model of the system is removed since the black-box identification strategy is used. Moreover, GPC structure has many advantages including low computational complexity, systematic design procedure, and fixed switching frequency that makes it a good alternative for practical applications. Various disturbances can have a negative impact on a DC-AC inverter;thus, considering robust dynamics and ease of implantation, the GPC scheme is used along with an improved exponential regressive least square identification algorithm as an adaptive strategy in the controller. Moreover, the prediction horizons of this controller have been increased, resulting in its low steady-state error and better performance. Furthermore, harmonics in the sinusoidal signal can decrease the total efficiency of the system;thus, an LC filter is used to reduce the level of total harmonic distortion. However, the stability of the filter is the most challenging issue in designing a suitable controller. Finally, the strength of the current controller is verified using experimental and simulations results.
暂无评论