咨询与建议

限定检索结果

文献类型

  • 314 篇 期刊文献
  • 207 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 525 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 486 篇 工学
    • 433 篇 计算机科学与技术...
    • 96 篇 软件工程
    • 60 篇 电气工程
    • 47 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 12 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
  • 81 篇 理学
    • 45 篇 数学
    • 21 篇 生物学
    • 5 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 4 篇 系统科学
    • 2 篇 地理学
  • 37 篇 医学
    • 16 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 36 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 3 篇 文学
    • 2 篇 外国语言文学
  • 3 篇 农学
    • 2 篇 作物学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 525 篇 inductive logic ...
  • 80 篇 machine learning
  • 24 篇 answer set progr...
  • 23 篇 relational learn...
  • 23 篇 data mining
  • 18 篇 statistical rela...
  • 11 篇 logic programmin...
  • 11 篇 predicate invent...
  • 11 篇 explainable ai
  • 9 篇 theory revision
  • 8 篇 reinforcement le...
  • 8 篇 semantic web
  • 8 篇 ilp
  • 8 篇 information extr...
  • 7 篇 computational le...
  • 7 篇 program synthesi...
  • 7 篇 online learning
  • 7 篇 first-order logi...
  • 7 篇 heuristics
  • 7 篇 meta-interpretiv...

机构

  • 9 篇 katholieke univ ...
  • 8 篇 imperial coll lo...
  • 7 篇 natl inst inform...
  • 6 篇 univ london impe...
  • 6 篇 univ bamberg cog...
  • 6 篇 katholieke univ ...
  • 5 篇 univ oxford oxfo...
  • 5 篇 univ texas dalla...
  • 5 篇 imperial coll lo...
  • 4 篇 univ york dept c...
  • 4 篇 univ waikato dep...
  • 4 篇 res org informat...
  • 4 篇 jozef stefan ins...
  • 4 篇 univ oxford comp...
  • 4 篇 columbia univ ct...
  • 4 篇 tufts univ dept ...
  • 4 篇 univ fed pernamb...
  • 4 篇 univ new south w...
  • 4 篇 univ toulouse 3 ...
  • 3 篇 department of co...

作者

  • 16 篇 inoue katsumi
  • 13 篇 srinivasan ashwi...
  • 13 篇 schmid ute
  • 8 篇 costa vitor sant...
  • 8 篇 muggleton stephe...
  • 8 篇 russo alessandra
  • 7 篇 cropper andrew
  • 7 篇 blockeel h
  • 7 篇 gupta gopal
  • 7 篇 camacho rui
  • 6 篇 dzeroski s
  • 6 篇 ribeiro tony
  • 6 篇 kersting kristia...
  • 6 篇 shakerin farhad
  • 6 篇 zelezny filip
  • 6 篇 zaverucha gerson
  • 5 篇 sakama chiaki
  • 5 篇 de raedt luc
  • 5 篇 law mark
  • 5 篇 siebers michael

语言

  • 498 篇 英文
  • 22 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=inductive Logic Programming"
525 条 记 录,以下是71-80 订阅
排序:
Recent Neural-Symbolic Approaches to ILP Based on Templates  4th
Recent Neural-Symbolic Approaches to ILP Based on Templates
收藏 引用
4th International Workshop on Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS)
作者: Beretta, Davide Monica, Stefania Bergenti, Federico Univ Parma Dipartimento Sci Matemat Fis & Informat I-43124 Parma Italy Univ Modena & Reggio Emilia Dipartimento Sci & Metodi Ingn I-42122 Reggio Emilia Italy
Deep learning has been increasingly successful in the last few years, but its inherent limitations have recently become more evident, especially with respect to explainability and interpretability. Neural-symbolic app... 详细信息
来源: 评论
Machine Learning Applied to Harmonic Functions in Music Composition  7th
Machine Learning Applied to Harmonic Functions in Music Comp...
收藏 引用
7th Brazilian Technology Symposium (BTSym) - Emerging Trends and Challenges in Technology
作者: Goncalves Junior, Clenio B. Petrucelli Homem, Murillo R. Fed Inst Educ Sci & Technol Sao Paulo Sao Paulo Brazil Univ Fed Sao Carlos Dept Comp Sci Sao Carlos Brazil
The knowledge representation process in Computer Music is an essential element for the development of systems. Methods have been applied to provide the computer with the ability to infer information from previously es... 详细信息
来源: 评论
Online Learning of logic Based Neural Network Structures  1
收藏 引用
30th International Conference on inductive logic programming (ILP) held as part of the 1st International Joint Conference on Learning and Reasoning (IJCLR)
作者: Guimaraes, Victor Costa, Vitor Santos Univ Porto CRACS Porto Portugal Univ Porto DCC FCUP Porto Portugal
In this paper, we present two online structure learning algorithms for NeuralLog, NeuralLog+OSLR and NeuralLog+OMIL. NeuralLog is a system that compiles first-order logic programs into neural networks. Both learning a... 详细信息
来源: 评论
Learning to Rank the Distinctiveness of Behaviour in Serial Offending  16th
Learning to Rank the Distinctiveness of Behaviour in Serial ...
收藏 引用
16th International Conference on logic programming and Non-Monotonic Reasoning (LPNMR)
作者: Law, Mark Sautory, Theophile Mitchener, Ludovico Davies, Kari Tonkin, Matthew Woodhams, Jessica Alrajeh, Dalal ILASP Ltd Grantham England Univ Calif Berkeley Berkeley CA 94720 USA Imperial Coll London London England Univ Bournemouth Bournemouth Dorset England Univ Leicester Leicester Leics England Univ Birmingham Birmingham W Midlands England
Comparative Case Analysis is an analytical process used to detect serial offending. It focuses on identifying distinctive behaviour that an offender displays consistently when committing their crimes. In practice, cri... 详细信息
来源: 评论
Learning programs by learning from failures
收藏 引用
MACHINE LEARNING 2021年 第4期110卷 801-856页
作者: Cropper, Andrew Morel, Rolf Univ Oxford Oxford England
We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and co... 详细信息
来源: 评论
Rule Learning over Knowledge Graphs with Genetic logic programming  38
Rule Learning over Knowledge Graphs with Genetic Logic Progr...
收藏 引用
38th IEEE International Conference on Data Engineering (ICDE)
作者: Wu, Lianlong Sallinger, Emanuel Sherkhonov, Evgeny Vahdati, Sahar Gottlob, Georg Univ Oxford Dept Comp Sci Oxford England TU Wien Inst Log & Computat Vienna Austria
Declarative rules such as Prolog and Datalog rules are common formalisms to express expert knowledge and facts. They play an important role in Knowledge Graph (KG) construction and completion. Such rules not only enco... 详细信息
来源: 评论
inductive learning of answer set programs for autonomous surgical task planning Application to a training task for surgeons
收藏 引用
MACHINE LEARNING 2021年 第7期110卷 1739-1763页
作者: Meli, Daniele Sridharan, Mohan Fiorini, Paolo Univ Verona Dept Comp Sci Str Grazie 15 I-37135 Verona Italy Univ Birmingham Sch Comp Sci Birmingham B15 2TT W Midlands England
The quality of robot-assisted surgery can be improved and the use of hospital resources can be optimized by enhancing autonomy and reliability in the robot's operation. logic programming is a good choice for task ... 详细信息
来源: 评论
Top program construction and reduction for polynomial time Meta-Interpretive learning
收藏 引用
MACHINE LEARNING 2021年 第4期110卷 755-778页
作者: Patsantzis, S. Muggleton, S. H. Imperial Coll London London England
Meta-Interpretive Learners, like most ILP systems, learn by searching for a correct hypothesis in the hypothesis space, the powerset of all constructible clauses. We show how this exponentially-growing search can be r... 详细信息
来源: 评论
Beneficial and harmful explanatory machine learning
收藏 引用
MACHINE LEARNING 2021年 第4期110卷 695-721页
作者: Ai, Lun Muggleton, Stephen H. Hocquette, Celine Gromowski, Mark Schmid, Ute Imperial Coll London Dept Comp London England Univ Bamberg Cognit Syst Grp Bamberg Germany
Given the recent successes of Deep Learning in AI there has been increased interest in the role and need for explanations in machine learned theories. A distinct notion in this context is that of Michie's definiti... 详细信息
来源: 评论
aILP: thinking visual scenes as differentiable logic programs
收藏 引用
MACHINE LEARNING 2023年 第5期112卷 1465-1497页
作者: Shindo, Hikaru Pfanschilling, Viktor Dhami, Devendra Singh Kersting, Kristian Tech Univ Darmstadt Darmstadt Germany Hessian Ctr AI Hessian AI Darmstadt Germany Tech Univ Darmstadt Ctr Cognit Sci Darmstadt Germany
Deep neural learning has shown remarkable performance at learning representations for visual object categorization. However, deep neural networks such as CNNs do not explicitly encode objects and relations among them.... 详细信息
来源: 评论