The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteris...
详细信息
The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteristic of the infraredimages, the principle component pursuit (PCP)-based methods are demonstrated to be applicable to infrared small target detection in a complex scene. However, existing PCP-based methods heavily depend on the uniform distribution of the background pixels and are prone to generating a high number of false alarms under strong clutter situations. In this paper, we propose a group low-rank regularized principle component pursuit model (GPCP) to solve this problem. First, the local imagepatches are clustered into several groups that correspond to different grayscale distributions. These patch groups are regularized with a group low-rank constraint, enabling an independent recovery of different background regions. Then, GPCP model integrates the group low-rank components with a global sparse component to extract small targets from the background. Different singular value thresholds can be exploited for image groups corresponding to different brightness and grayscale variance, boosting the recovery of background clutters and also enhancing the detection of small targets. Finally, a customized optimization approach based on alternating direction method of multipliers is proposed to solve this model. We set three representative detection scenes, including the ground background, sea background and sky background for experiment analysis and model comparison. The evaluation results show the proposed model has superiority in background suppression and achieves better adaptability for different scenes compared with various state-of-the-art methods.
The process of infraredimages via computer-based algorithms for better application is a frontier field integrating physical technology with computer science. One of the key techniques in infraredimage processing is ...
详细信息
ISBN:
(数字)9781510639690
ISBN:
(纸本)9781510639690
The process of infraredimages via computer-based algorithms for better application is a frontier field integrating physical technology with computer science. One of the key techniques in infraredimage processing is the detection of infrared targets. This technique is extensively applied in security and defense systems and search and tracking systems. However, due to their small size, dim light and lack of texture, the detection of infrared targets is a technical problem. One strategy to address this problem is to transform the detection work into a non-convex optimization problem of recovering a low-rank matrix (background) and a sparse matrix (target) from a patch-image matrix (original image) based on IPI (infraredpatch-image) model. When targets are clear and recognizable, the APG (accelerated proximal gradient) algorithm works effectively to solve it. However, when targets become much dimmer and are screened by the intricate texture of background, the experimental detection results degrade dramatically. In order to solve this problem, a novel method via IRNN (iteratively reweighted nuclear norm) is proposed in this paper. Experimental results show that under different complicated backgrounds, targets with higher SCRG (signal-to-clutter ratio gain) values and BSF (background suppression factor) values can be acquired through IRNN algorithm compared with the APG algorithm, which means that our method performs better.
暂无评论