咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 power demand
  • 1 篇 spiking convolut...
  • 1 篇 parallel process...
  • 1 篇 neurons
  • 1 篇 traffic sign rec...
  • 1 篇 image coding
  • 1 篇 real-time system...
  • 1 篇 field-programmab...
  • 1 篇 attention fusion
  • 1 篇 biological syste...
  • 1 篇 image recognitio...
  • 1 篇 accuracy
  • 1 篇 field programmab...
  • 1 篇 encoding
  • 1 篇 input coding opt...

机构

  • 1 篇 guangdong univ t...
  • 1 篇 guangdong univ t...

作者

  • 1 篇 liu yijun
  • 1 篇 ye wujian
  • 1 篇 ye jialiang
  • 1 篇 han chao
  • 1 篇 chen shaozhen
  • 1 篇 chen huarun
  • 1 篇 chen yuehai

语言

  • 1 篇 英文
检索条件"主题词=input coding optimization"
1 条 记 录,以下是1-10 订阅
排序:
Research on Hardware Acceleration of Traffic Sign Recognition Based on Spiking Neural Network and FPGA Platform
收藏 引用
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2025年 第2期33卷 499-511页
作者: Chen, Huarun Liu, Yijun Ye, Wujian Ye, Jialiang Chen, Yuehai Chen, Shaozhen Han, Chao Guangdong Univ Technol Sch Integrated Circuits Guangzhou 510006 Peoples R China Guangdong Univ Technol Res Inst IC Innovat RIICI Guangzhou 510006 Peoples R China
Most of the existing methods for traffic sign recognition exploited deep learning technology such as convolutional neural networks (CNNs) to achieve a breakthrough in detection accuracy;however, due to the large numbe... 详细信息
来源: 评论