咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 spatial geometri...
  • 1 篇 random algorithm...
  • 1 篇 neural networks ...
  • 1 篇 interpretable co...
  • 1 篇 data modeling

机构

  • 1 篇 china univ min &...
  • 1 篇 china univ min &...
  • 1 篇 singapore univ t...
  • 1 篇 northeastern uni...
  • 1 篇 minist educ key ...

作者

  • 1 篇 dai wei
  • 1 篇 nan jing
  • 1 篇 yuan guan
  • 1 篇 zhou ping

语言

  • 1 篇 英文
检索条件"主题词=interpretable constructive algorithm"
1 条 记 录,以下是1-10 订阅
排序:
An interpretable constructive algorithm for Incremental Random Weight Neural Networks and Its Application
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024年 第12期20卷 13622-13632页
作者: Nan, Jing Dai, Wei Yuan, Guan Zhou, Ping China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Jiangsu Peoples R China Singapore Univ Technol & Design Engn Prod Dev Pillar Singapore 487372 Singapore China Univ Min & Technol Sch Informat & Control Engn Sch Comp Sci & Technol Digitizat MineEngn Res CtrMinist Educ Xuzhou 221116 Jiangsu Peoples R China Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Minist Educ Key Lab Coal Proc & Efficient Utilizat Xuzhou 221116 Jiangsu Peoples R China
In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of... 详细信息
来源: 评论