咨询与建议

限定检索结果

文献类型

  • 115 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 126 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 理学
    • 102 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
  • 58 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 43 篇 工学
    • 20 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 6 篇 电气工程
    • 6 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 信息与通信工程
    • 1 篇 交通运输工程
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 126 篇 iteration comple...
  • 18 篇 convex optimizat...
  • 11 篇 convergence rate
  • 7 篇 proximal gradien...
  • 6 篇 first-order meth...
  • 6 篇 acceleration
  • 6 篇 augmented lagran...
  • 5 篇 subgradient meth...
  • 5 篇 kernel function
  • 4 篇 convex programmi...
  • 4 篇 huge-scale optim...
  • 4 篇 admm
  • 4 篇 operation comple...
  • 4 篇 alternating dire...
  • 4 篇 block coordinate...
  • 4 篇 nonconvex optimi...
  • 3 篇 tensor method
  • 3 篇 big data optimiz...
  • 3 篇 manifold optimiz...
  • 3 篇 composite minimi...

机构

  • 17 篇 univ minnesota d...
  • 7 篇 georgia inst tec...
  • 5 篇 chinese univ hon...
  • 5 篇 univ calif davis...
  • 4 篇 rensselaer polyt...
  • 4 篇 shanghai univ fi...
  • 4 篇 chinese univ hon...
  • 3 篇 shanghai univ fi...
  • 3 篇 univ calif berke...
  • 3 篇 guangxi normal u...
  • 3 篇 hang seng univ h...
  • 3 篇 china three gorg...
  • 3 篇 shanghai univ ne...
  • 3 篇 shanghai univ co...
  • 3 篇 univ edinburgh s...
  • 3 篇 southeast univ s...
  • 3 篇 oak ridge natl l...
  • 3 篇 hong kong baptis...
  • 2 篇 natl univ singap...
  • 2 篇 mathematics depa...

作者

  • 11 篇 zhang shuzhong
  • 9 篇 lin tianyi
  • 8 篇 lu zhaosong
  • 8 篇 monteiro renato ...
  • 8 篇 jiang bo
  • 7 篇 ma shiqian
  • 6 篇 richtarik peter
  • 6 篇 kong weiwei
  • 5 篇 so anthony man-c...
  • 5 篇 tappenden rachae...
  • 5 篇 takac martin
  • 5 篇 zhang mingwang
  • 4 篇 he chuan
  • 4 篇 li xin
  • 4 篇 melo jefferson g...
  • 4 篇 yuan xiaoming
  • 4 篇 xu zi
  • 4 篇 xu yangyang
  • 3 篇 hu yaohua
  • 3 篇 zhang tong

语言

  • 125 篇 英文
  • 1 篇 其他
检索条件"主题词=iteration complexity"
126 条 记 录,以下是21-30 订阅
排序:
Perseus: a simple and optimal high-order method for variational inequalities
收藏 引用
MATHEMATICAL PROGRAMMING 2025年 第1-2期209卷 609-650页
作者: Lin, Tianyi Jordan, Michael I. MIT Lab Informat & Decis Syst LIDS Cambridge MA 02139 USA Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA USA
This paper settles an open and challenging question pertaining to the design of simple and optimal high-order methods for solving smooth and monotone variational inequalities (VIs). A VI involves finding x ⋆is an elem... 详细信息
来源: 评论
Proximal gradient method for convex multiobjective optimization problems without Lipschitz continuous gradients
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2025年 第1期91卷 27-66页
作者: Zhao, Xiaopeng Raushan, Ravi Ghosh, Debdas Yao, Jen-Chih Qi, Min Tiangong Univ Sch Math Sci Tianjin 300387 Peoples R China Indian Inst Technol BHU Dept Math Sci Varanasi 221005 India China Med Univ China Med Univ Hosp Res Ctr Interneural Comp Taichung 40447 Taiwan Acad Romanian Scientists Bucharest 50044 Romania
This paper analyzes a proximal gradient method for nondifferentiable convex multiobjective optimization problems, where the components of the objective function are the sum of a proper lower semicontinuous function an... 详细信息
来源: 评论
An accelerated first-order regularized momentum descent ascent algorithm for stochastic nonconvex-concave minimax problems
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2025年 第2期90卷 557-582页
作者: Zhang, Huiling Xu, Zi Shanghai Univ Coll Sci Dept Math Shanghai 200444 Peoples R China Shanghai Univ Newtouch Ctr Math Shanghai 200444 Peoples R China
Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized moment... 详细信息
来源: 评论
Optimal Approximation of Average Reward Markov Decision Processes
收藏 引用
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS 2025年 第3期65卷 567-581页
作者: Sapronov, Y. F. Yudin, N. E. Moscow Inst Phys & Technol Dolgoprudnyi 141701 Russia Higher Sch Econ Univ Moscow 109028 Russia Innopolis Univ Innopolis 420500 Russia Russian Acad Sci Inst Informat Transmiss Problems Kharkevich Inst Moscow 127051 Russia Russian Acad Sci Ivannikov Inst Syst Programming Moscow 109004 Russia Russian Acad Sci Fed Res Ctr Informat & Control Moscow 119333 Russia
We continue to develop the concept of studying the epsilon-optimal policy for Average Reward Markov Decision Processes (AMDP) by reducing it to Discounted Markov Decision Processes (DMDP). Existing research often stip... 详细信息
来源: 评论
STOCHASTIC NESTED PRIMAL-DUAL METHOD FOR NONCONVEX CONSTRAINED COMPOSITION OPTIMIZATION
收藏 引用
MATHEMATICS OF COMPUTATION 2025年 第351期94卷 305-358页
作者: Jin, Lingzi Wang, Xiao Hong Kong Polytech Univ Dept Appl Math Kowloon Hong Kong Peoples R China Peng Cheng Lab Shenzhen 518066 Peoples R China
In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expectedvalue functions whose accurate information is normally expensive to calculate. We... 详细信息
来源: 评论
On the convergence analysis of a proximal gradient method for multiobjective optimization
收藏 引用
TOP 2025年 第1期33卷 102-132页
作者: Zhao, Xiaopeng Ghosh, Debdas Qin, Xiaolong Tammer, Christiane Yao, Jen-Chih Tiangong Univ Sch Math Sci Tianjin 300387 Peoples R China Indian Inst Technol BHU Dept Math Sci Varanasi 221005 Uttar Pradesh India Zhejiang Normal Univ Dept Math Jinhua 321004 Peoples R China Martin Luther Univ Halle Wittenberg Dept Math D-06099 Halle Saale Germany China Med Univ China Med Univ Hosp Res Ctr Interneural Comp Taichung 40447 Taiwan Acad Romanian Scientists Bucharest 50044 Romania
We propose a proximal gradient method for unconstrained nondifferentiable multiobjective optimization problems with the objective function being the sum of a proper lower semicontinuous convex function and a continuou... 详细信息
来源: 评论
An efficient parametric kernel function of IPMs for Linear optimization problems
收藏 引用
RESULTS IN CONTROL AND OPTIMIZATION 2025年 18卷
作者: Houas, Amrane Merahi, Fateh Univ Mohamed Khider Fac Exact Sci Nat & Life Sci Dept Math Lab Appl Math Biskra 07000 Algeria Mustapha Ben Boulaid Batna II Univ Fac Math & Comp Sci Dept Stat & Data Sci Batna Algeria
In this manuscript, we examine linear optimization problems formulated in the standard format. A novel kernel function is employed to devise a new interior-point algorithm for these problems. The proposed method reduc... 详细信息
来源: 评论
Majorization-minimization-based Levenberg-Marquardt method for constrained nonlinear least squares
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2023年 第3期84卷 833-874页
作者: Marumo, Naoki Okuno, Takayuki Takeda, Akiko Univ Tokyo Grad Sch Informat Sci & Technol Tokyo Japan Seikei Univ Fac Sci & Technol Tokyo Japan RIKEN Ctr Adv Intelligence Project Tokyo Japan
A new Levenberg-Marquardt (LM) method for solving nonlinear least squares problems with convex constraints is described. Various versions of the LM method have been proposed, their main differences being in the choice... 详细信息
来源: 评论
OPTIMALITY CONDITIONS AND NUMERICAL ALGORITHMS FOR A CLASS OF LINEARLY CONSTRAINED MINIMAX OPTIMIZATION PROBLEMS
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2024年 第3期34卷 2883-2916页
作者: Dai, Yu-Hong Wang, Jiani Zhang, Liwei Chinese Acad Sci LSEC AMSS Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Math Sci Beijing 100049 Peoples R China Beijing Univ Posts & Telecommun Sch Sci Beijing 100876 Peoples R China Northeastern Univ Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt Shenyang 110819 Peoples R China Northeastern Univ Key Lab Data Analyt & Optimizat Smart Ind Minist Educ Shenyang 110819 Peoples R China
It is well known that there have been many numerical algorithms for solving non- smooth minimax problems;however, numerical algorithms for non-smooth minimax problems with joint linear constraints are very rare. This ... 详细信息
来源: 评论
A second-order method for strongly convex -regularization problems
收藏 引用
MATHEMATICAL PROGRAMMING 2016年 第1-2期156卷 189-219页
作者: Fountoulakis, Kimon Gondzio, Jacek Univ Edinburgh Sch Math Peter Guthrie Tait Rd Edinburgh EH9 3FD Midlothian Scotland Univ Edinburgh Maxwell Inst Peter Guthrie Tait Rd Edinburgh EH9 3FD Midlothian Scotland
In this paper a robust second-order method is developed for the solution of strongly convex -regularized problems. The main aim is to make the proposed method as inexpensive as possible, while even difficult problems ... 详细信息
来源: 评论