咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 3 篇 iterative reweig...
  • 1 篇 space-time adapt...
  • 1 篇 clutter suppress...
  • 1 篇 conventional spa...
  • 1 篇 compressed sensi...
  • 1 篇 iterative method...
  • 1 篇 upper-bounding s...
  • 1 篇 group lasso
  • 1 篇 concave conjugat...
  • 1 篇 multiple measure...
  • 1 篇 airborne radar
  • 1 篇 bayes methods
  • 1 篇 simultaneous spa...
  • 1 篇 radar clutter
  • 1 篇 block-sparse reg...
  • 1 篇 concave programm...
  • 1 篇 sbl penalty func...
  • 1 篇 log-sum minimiza...
  • 1 篇 sparse recovery ...
  • 1 篇 iterative reweig...

机构

  • 1 篇 univ elect sci &...
  • 1 篇 univ rouen litis...
  • 1 篇 xidian univ natl...
  • 1 篇 stevens inst tec...

作者

  • 1 篇 liu cheng
  • 1 篇 zhang shuguang
  • 1 篇 li hongbin
  • 1 篇 rakotomamonjy a.
  • 1 篇 shen yanning
  • 1 篇 ren bing
  • 1 篇 fang jun
  • 1 篇 wang tong

语言

  • 3 篇 英文
检索条件"主题词=iterative reweighted algorithms"
3 条 记 录,以下是1-10 订阅
排序:
Clutter suppression based on iterative reweighted methods with multiple measurement vectors for airborne radar
收藏 引用
IET RADAR SONAR AND NAVIGATION 2022年 第9期16卷 1446-1459页
作者: Liu, Cheng Wang, Tong Zhang, Shuguang Ren, Bing Xidian Univ Natl Lab Radar Signal Proc Xian 710071 Peoples R China
Sparse recovery algorithms have been applied to the Space-time adaptive processing for reducing the requirement of samples over the past 15 years. However, many Sparse recovery algorithms are not robust and need accur... 详细信息
来源: 评论
Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms
收藏 引用
SIGNAL PROCESSING 2011年 第7期91卷 1505-1526页
作者: Rakotomamonjy, A. Univ Rouen LITIS EA4108 F-76800 St Etienne France
In this paper, we survey and compare different algorithms that, given an overcomplete dictionary of elementary functions, solve the problem of simultaneous sparse signal approximation, with common sparsity profile ind... 详细信息
来源: 评论
Exact Reconstruction Analysis of Log-Sum Minimization for Compressed Sensing
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2013年 第12期20卷 1223-1226页
作者: Shen, Yanning Fang, Jun Li, Hongbin Univ Elect Sci & Technol China Natl Key Lab Sci & Technol Commun Chengdu 611731 Peoples R China Stevens Inst Technol Dept Elect & Comp Engn Hoboken NJ 07030 USA
The fact that fewer measurements are needed by log-sum minimization for sparse signal recovery than the l(1)-minimization has been observed by extensive experiments. Nevertheless, such a benefit brought by the use of ... 详细信息
来源: 评论