咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 15 篇 工学
    • 11 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 2 篇 理学
    • 1 篇 物理学
    • 1 篇 地球物理学
  • 1 篇 文学

主题

  • 15 篇 joint sparse cod...
  • 4 篇 kernel sparse co...
  • 2 篇 tactile sequence...
  • 2 篇 sparse coding
  • 2 篇 object recogniti...
  • 1 篇 tactile percepti...
  • 1 篇 self-similar
  • 1 篇 clustering
  • 1 篇 self-taught lear...
  • 1 篇 friction
  • 1 篇 image super-reso...
  • 1 篇 deep learning
  • 1 篇 multi-view learn...
  • 1 篇 tactile measurem...
  • 1 篇 single-channel s...
  • 1 篇 sonar
  • 1 篇 text subsampling
  • 1 篇 joint dictionary...
  • 1 篇 ratio mask
  • 1 篇 dictionaries

机构

  • 3 篇 tsinghua univ de...
  • 2 篇 shijiazhuang tie...
  • 2 篇 tsinghua univ tn...
  • 1 篇 zhengzhou univ l...
  • 1 篇 china univ geosc...
  • 1 篇 tnlist state key...
  • 1 篇 department of el...
  • 1 篇 north china univ...
  • 1 篇 chinese acad sci...
  • 1 篇 univ queensland ...
  • 1 篇 fuzhou univ coll...
  • 1 篇 univ sci & techn...
  • 1 篇 tsinghua univ st...
  • 1 篇 sichuan univ nat...
  • 1 篇 samsung res inst...
  • 1 篇 department of co...
  • 1 篇 harvard univ cam...
  • 1 篇 shanghai univ sc...
  • 1 篇 yuncheng univ sc...
  • 1 篇 sichuan police c...

作者

  • 5 篇 sun fuchun
  • 5 篇 liu huaping
  • 2 篇 gao meng
  • 2 篇 yu yuanlong
  • 1 篇 zhang lei
  • 1 篇 zhu jie
  • 1 篇 guo di
  • 1 篇 shen heng tao
  • 1 篇 feng ziliang
  • 1 篇 zang miao
  • 1 篇 li beichen
  • 1 篇 zhou yuan
  • 1 篇 yang yang
  • 1 篇 gwon youngjune
  • 1 篇 cai yin
  • 1 篇 xu huimin
  • 1 篇 xu changsheng
  • 1 篇 li pingxiang
  • 1 篇 fuchun sun
  • 1 篇 cha miriam

语言

  • 15 篇 英文
检索条件"主题词=joint sparse coding"
15 条 记 录,以下是11-20 订阅
排序:
Object Recognition Using Tactile Measurements: Kernel sparse coding Methods
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2016年 第3期65卷 656-665页
作者: Liu, Huaping Guo, Di Sun, Fuchun Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol State Key Lab Intelligent Technol & Syst Dept Comp Sci & Technol Beijing 100084 Peoples R China
Dexterous robots have emerged in the last decade in response to the need for fine-motor-control assistance in applications as diverse as surgery, undersea welding, and mechanical manipulation in space. Crucial to the ... 详细信息
来源: 评论
Supervised single-channel speech enhancement using ratio mask with joint dictionary learning
收藏 引用
SPEECH COMMUNICATION 2016年 第0期82卷 38-52页
作者: Zhang, Long Bao, Guangzhao Zhang, Jing Ye, Zhongfu Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230027 Peoples R China Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei 230027 Peoples R China State Key Lab Math Engn & Adv Comp Wuxi 214125 Peoples R China
A novel structure which combines the advantages of ratio mask (RM) and joint dictionary learning (JDL) is proposed for single-channel speech enhancement in this paper. The novel speech enhancement structure makes full... 详细信息
来源: 评论
Geolocation with Subsampled Microblog Social Media  15
Geolocation with Subsampled Microblog Social Media
收藏 引用
ACM International Conference on Multimedia (ACM Multimedia)
作者: Cha, Miriam Gwon, Youngjune Kung, H. T. Harvard Univ Cambridge MA 02138 USA
We propose a data-driven geolocation method on microblog text. Key idea underlying our approach is sparse coding, an unsupervised learning algorithm. Unlike conventional positioning algorithms, we geolocate a user by ... 详细信息
来源: 评论
Multitask Extreme Learning Machine for Visual Tracking
收藏 引用
COGNITIVE COMPUTATION 2014年 第3期6卷 391-404页
作者: Liu, Huaping Sun, Fuchun Yu, Yuanlong Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China TNLIST State Key Lab Intelligent Technol & Syst Beijing Peoples R China Fuzhou Univ Coll Math & Comp Sci Fuzhou 350002 Peoples R China
In this paper, we try to address the joint optimization problem of the extreme learning machines corresponding to different features. The method is based on the L (2,1) norm penalty, which encourages joint sparse codi... 详细信息
来源: 评论
Self-taught dimensionality reduction on the high-dimensional small-sized data
收藏 引用
PATTERN RECOGNITION 2013年 第1期46卷 215-229页
作者: Zhu, Xiaofeng Huang, Zi Yang, Yang Shen, Heng Tao Xu, Changsheng Luo, Jiebo Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld 4072 Australia Chinese Acad Sci Inst Automat Beijing 100864 Peoples R China Univ Rochester Dept Comp Sci Rochester NY 14627 USA
To build an effective dimensionality reduction model usually requires sufficient data. Otherwise, traditional dimensionality reduction methods might be less effective. However, sufficient data cannot always be guarant... 详细信息
来源: 评论