咨询与建议

限定检索结果

文献类型

  • 658 篇 会议
  • 577 篇 期刊文献
  • 8 篇 学位论文

馆藏范围

  • 1,243 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,050 篇 工学
    • 641 篇 计算机科学与技术...
    • 360 篇 电气工程
    • 147 篇 信息与通信工程
    • 133 篇 控制科学与工程
    • 109 篇 软件工程
    • 71 篇 机械工程
    • 44 篇 仪器科学与技术
    • 42 篇 电子科学与技术(可...
    • 39 篇 石油与天然气工程
    • 38 篇 环境科学与工程(可...
    • 29 篇 交通运输工程
    • 27 篇 材料科学与工程(可...
    • 25 篇 动力工程及工程热...
    • 24 篇 测绘科学与技术
    • 21 篇 生物医学工程(可授...
    • 16 篇 网络空间安全
    • 13 篇 土木工程
  • 216 篇 理学
    • 75 篇 数学
    • 46 篇 统计学(可授理学、...
    • 34 篇 物理学
    • 32 篇 生物学
    • 23 篇 化学
    • 22 篇 地球物理学
    • 18 篇 系统科学
  • 207 篇 管理学
    • 191 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 67 篇 医学
    • 47 篇 临床医学
  • 43 篇 经济学
    • 35 篇 应用经济学
  • 25 篇 农学
    • 16 篇 作物学
  • 22 篇 教育学
    • 15 篇 教育学
  • 8 篇 法学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 1,243 篇 k-means algorith...
  • 198 篇 clustering
  • 85 篇 cluster analysis
  • 82 篇 data mining
  • 47 篇 machine learning
  • 39 篇 clustering algor...
  • 35 篇 image segmentati...
  • 33 篇 genetic algorith...
  • 25 篇 clustering analy...
  • 21 篇 data clustering
  • 21 篇 particle swarm o...
  • 19 篇 clustering algor...
  • 18 篇 unsupervised lea...
  • 16 篇 algorithms
  • 16 篇 genetic algorith...
  • 16 篇 classification
  • 14 篇 customer segment...
  • 14 篇 big data
  • 14 篇 optimization
  • 14 篇 cluster

机构

  • 6 篇 hubei univ techn...
  • 5 篇 univ piraeus dep...
  • 4 篇 univ zabol fac w...
  • 4 篇 wuhan univ techn...
  • 3 篇 univ tokyo ctr s...
  • 3 篇 univ chinese aca...
  • 3 篇 indian stat inst...
  • 3 篇 iran univ sci & ...
  • 3 篇 chinese acad sci...
  • 3 篇 univ s alabama d...
  • 3 篇 xidian univ eled...
  • 3 篇 wright state uni...
  • 3 篇 charles sturt un...
  • 2 篇 univ elect sci &...
  • 2 篇 school of automa...
  • 2 篇 tokyo inst techn...
  • 2 篇 tsinghua univ el...
  • 2 篇 qilu univ techno...
  • 2 篇 harbin inst tech...
  • 2 篇 china electric p...

作者

  • 5 篇 bandyopadhyay s
  • 5 篇 maulik u
  • 5 篇 virvou maria
  • 5 篇 troussas christo...
  • 4 篇 kuo r. j.
  • 4 篇 ye zhiwei
  • 3 篇 jain p. k.
  • 3 篇 alsultan ks
  • 3 篇 chen yan
  • 3 篇 yiping jiao
  • 3 篇 islam md zahidul
  • 3 篇 yildirim pinar
  • 3 篇 liu chuan
  • 3 篇 sugasawa shonosu...
  • 3 篇 poli lorenzo
  • 3 篇 bagirov adil m.
  • 3 篇 xin binjie
  • 3 篇 wang li
  • 3 篇 li yan
  • 3 篇 chen yang

语言

  • 1,197 篇 英文
  • 31 篇 其他
  • 10 篇 中文
  • 3 篇 法文
  • 3 篇 土耳其文
检索条件"主题词=k-Means Algorithm"
1243 条 记 录,以下是51-60 订阅
排序:
A new algorithm for initial cluster centers in k-means algorithm
收藏 引用
PATTERN RECOGNITION LETTERS 2011年 第14期32卷 1701-1705页
作者: Erisoglu, Murat Calis, Nazif Sakallioglu, Sadullah Cukurova Univ Fac Sci & Letters Dept Stat TR-01300 Adana Turkey
Clustering is one of the widely used knowledge discovery techniques to reveal structures in a dataset that can be extremely useful to the analyst. In iterative clustering algorithms the procedure adopted for choosing ... 详细信息
来源: 评论
Behavioral analysis of electricity consumption characteristics for customer groups using the k-means algorithm
收藏 引用
SYSTEMS AND SOFT COMPUTING 2024年 6卷
作者: Wu, Ruobing Yunnan Power Grid Co Informat Ctr Kunming 650217 Yunnan Peoples R China
In the fierce competition of the electricity market, how to consolidate and develop customers is particularly important. Aiming to analyze the electricity consumption characteristics of customer groups, this paper use... 详细信息
来源: 评论
A method for correcting InSAR interferogram errors using GNSS data and the k-means algorithm
收藏 引用
EARTH PLANETS AND SPACE 2024年 第1期76卷 1-19页
作者: Yan, Huineng Dai, Wujiao Xu, Wenbin Shi, Qiang Sun, kai Lu, Zhigang Wang, Rui Cent South Univ Sch Geosci & Info Phys Changsha 410083 Hunan Peoples R China Gannan Univ Sci & Technol Sch Resources & Civil Engn Ganzhou 341000 Jiangxi Peoples R China Ganzhou Key Lab Remote Sensing Resource & Environm Ganzhou 341000 Jiangxi Peoples R China Jiangsu Ocean Univ Sch Marine Technol & Geomatics Lianyungang 222005 Jiangsu Peoples R China
Correcting interferometric synthetic aperture radar (InSAR) interferograms using Global Navigation Satellite System (GNSS) data can effectively improve their accuracy. However, most of the existing correction methods ... 详细信息
来源: 评论
A NEAR-OPTIMAL INITIAL SEED VALUE SELECTION IN k-means algorithm USING A GENETIC algorithm
收藏 引用
PATTERN RECOGNITION LETTERS 1993年 第10期14卷 763-769页
作者: BABU, GP MURTY, MN INDIAN INST SCI DEPT COMP SCI & AUTOMAT BANGALORE 560012 KARNATAKA INDIA
The k-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic al to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the k-me... 详细信息
来源: 评论
A comparative study of the k-means algorithm and the normal mixture model for clustering:: Univariate case
收藏 引用
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 2007年 第11期137卷 3722-3740页
作者: Qiu, Dingxi Tamhane, Ajit C. Northwestern Univ Dept Ind Engn & Management Sci Evanston IL 60208 USA
This paper gives a comparative study of the k-means algorithm and the mixture model (MM) method for clustering normal data. The EM algorithm is used to compute the maximum likelihood estimators (MLEs) of the parameter... 详细信息
来源: 评论
Research on image text recognition based on canny edge detection algorithm and k-means algorithm
收藏 引用
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2022年 第SUPPL 1期13卷 72-80页
作者: Wu, Fangsheng Zhu, Changan Xu, Jinxiu Bhatt, Mohammed Wasim Sharma, Ashutosh Anhui Business Vocat Coll Inst Informat Engn Hefei 231131 Anhui Peoples R China Univ Sci & Technol China Hefei 230026 Anhui Peoples R China Cent Univ Punjab Bathinda India Southern Fed Univ Inst Comp Technol & Informat Secur Southern Fed Dist Russia
The latest research in the field of recognition of image characters has led to various developments in the modern technological works for the improvement of recognition rate and precision. This technology is significa... 详细信息
来源: 评论
HFSMOOk-means: An Improved k-means algorithm Using Hesitant Fuzzy Sets and Multi-objective Optimization
收藏 引用
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020年 第8期45卷 6241-6257页
作者: Rezaei, kamran Rezaei, Hassan Univ Sistan & Baluchestan Fac Math Dept Comp Sci Zahedan Iran
Clustering is considered as one of the important methods in data mining. The performance of the k-means algorithm, as one of the most common clustering methods, is high sensitivity to the initial cluster centers. Henc... 详细信息
来源: 评论
On k-means algorithm with the use of Mahalanobis distances
收藏 引用
STATISTICS & PROBABILITY LETTERS 2014年 第1期84卷 88-95页
作者: Melnykoy, Igor Melnykov, Volodymyr Nazarbayev Univ Astana 010000 Kazakhstan Univ Alabama Tuscaloosa AL 35487 USA
The k-means algorithm is commonly used with the Euclidean metric. While the use of Mahalanobis distances seems to be a straightforward extension of the algorithm, the initial estimation of covariance matrices can be c... 详细信息
来源: 评论
Improvement of k-means algorithm for Accelerated Big Data Clustering
收藏 引用
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH 2021年 第2期14卷 99-119页
作者: Wu, Chunqiong Yan, Bingwen Yu, Rongrui Huang, Zhangshu Yu, Baoqin Yu, Yanliang Chen, Na Zhou, Xiukao Yango Univ Business Coll Fuzhou Peoples R China Fujian Univ Big Data Business Intelligence Engn Res Ctr Fuzhou Peoples R China
With the rapid development of the computer level, especially in recent years, "Internet +," cloud platforms, etc. have been used in various industries, and various types of data have grown in large quantitie... 详细信息
来源: 评论
Similarity matrix-based k-means algorithm for text clustering
收藏 引用
Journal of Beijing Institute of Technology 2015年 第4期24卷 566-572页
作者: 曹奇敏 郭巧 吴向华 School of Automation Beijing Institute of Technology
k-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... 详细信息
来源: 评论