咨询与建议

限定检索结果

文献类型

  • 20 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 20 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 石油与天然气工程
    • 3 篇 软件工程
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 35 篇 k-medoids algori...
  • 7 篇 clustering
  • 5 篇 k-means algorith...
  • 5 篇 particle swarm o...
  • 5 篇 obstacles constr...
  • 4 篇 spatial clusteri...
  • 3 篇 clustering algor...
  • 2 篇 ant colony optim...
  • 2 篇 wsn (wireless se...
  • 2 篇 sns(sensor nodes...
  • 2 篇 genetic algorith...
  • 2 篇 cluster analysis
  • 2 篇 ontology
  • 1 篇 internet of thin...
  • 1 篇 text clustering
  • 1 篇 fuzzy c means al...
  • 1 篇 telecommunicatio...
  • 1 篇 adaptive arrays
  • 1 篇 claims frequency...
  • 1 篇 clustering cente...

机构

  • 4 篇 henan univ techn...
  • 3 篇 henan acad traff...
  • 3 篇 pla informat eng...
  • 2 篇 liaoning tech un...
  • 1 篇 kth royal inst t...
  • 1 篇 univ milan irccs...
  • 1 篇 univ bejaia lab ...
  • 1 篇 beijing informat...
  • 1 篇 inst readaptat g...
  • 1 篇 tongji univ coll...
  • 1 篇 univ kalyani dep...
  • 1 篇 zhejiang sci tec...
  • 1 篇 pla informat eng...
  • 1 篇 univ manchester ...
  • 1 篇 korea natl univ ...
  • 1 篇 henan acad traff...
  • 1 篇 key laboratory o...
  • 1 篇 neurol rehab ctr...
  • 1 篇 iit indore disci...
  • 1 篇 pla informat eng...

作者

  • 5 篇 wang jiayao
  • 5 篇 zhang xueping
  • 4 篇 fan zhongshan
  • 1 篇 tesio l.
  • 1 篇 li yijia
  • 1 篇 hart j.
  • 1 篇 t.velmurugan
  • 1 篇 silva p.
  • 1 篇 chakraborty swas...
  • 1 篇 jing zhang
  • 1 篇 lu lu
  • 1 篇 gardner b. p.
  • 1 篇 王红梅
  • 1 篇 ramadhan muhamma...
  • 1 篇 wu mingguang
  • 1 篇 biering-sorensen...
  • 1 篇 wu bing
  • 1 篇 xu wenbo
  • 1 篇 zhang dexian
  • 1 篇 boudjemil faiza

语言

  • 34 篇 英文
  • 1 篇 其他
检索条件"主题词=k-Medoids Algorithm"
35 条 记 录,以下是1-10 订阅
排序:
An Analysis of Natural Disaster Data by Using k-Means and k-medoids algorithm of Data Mining Techniques  15
An Analysis of Natural Disaster Data by Using K-Means and K-...
收藏 引用
15th International Conference on Quality in Research (QiR) - International Symposium on Electrical and Computer Engineering
作者: Prihandoko Bertalya Ramadhan, Muhammad Iqbal Gunadarma Univ Fac Comp Sci & Informat Technol Depok Jawa Barat Indonesia
Indonesia is one of the countries with diverse morphology of the lands, high mountains, and the tropical climates of frequent high rainfall. This condition often causes natural disasters in some areas of the country, ... 详细信息
来源: 评论
Application of the k-medoids Partitioning algorithm for Clustering of Time Series Data  10
Application of the k-medoids Partitioning Algorithm for Clus...
收藏 引用
10th IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) - Smart Grids - key Enablers of a Green Power System
作者: Radovanovic, Ana Ye, Xinlin Milanovic, Jovica, V Milosavljevic, Nina Storchi, Riccardo Univ Manchester Dept Elect & Elect Engn Manchester Lancs England Univ Manchester Div Neurosci & Expt Psychol Manchester Lancs England
Data clustering has been widely applied in numerous areas in order to pave the way for adequate and efficient modelling, control and operation. In the past, most of the data clustering was carried out on static data. ... 详细信息
来源: 评论
A Novel k-medoids clustering recommendation algorithm based on probability distribution for collaborative filtering
收藏 引用
kNOWLEDGE-BASED SYSTEMS 2019年 175卷 96-106页
作者: Deng, Jiangzhou Guo, Junpeng Wang, Yong Tianjin Univ Coll Management & Econ Tianjin 30072 Peoples R China Chongqing Univ Posts & Telecommun Key Lab Elect Commerce & Logist Chongqing Chongqing 400065 Peoples R China
Data sparsity is a widespread problem of collaborative filtering (CF) recommendation algorithms. However, some common CF methods cannot adequately utilize all user rating information;they are only able to use a small ... 详细信息
来源: 评论
Clustered and Thinned Antenna Array for Adaptive Interference Suppression via k-medoids of Desired-Signal Steering Vector
收藏 引用
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 2024年 第3期72卷 2867-2872页
作者: Lee, Yinman Natl Chi Nan Univ Dept Elect Engn Puli 54561 Taiwan
Both clustering and thinning are effective ways to reduce the implementation complexity of large-size antenna arrays. In this communication, we propose simple but efficient approaches to cluster and thin the antenna a... 详细信息
来源: 评论
A novel spatial clustering with obstacles constraints based on particle swarm optimization and k-medoids
A novel spatial clustering with obstacles constraints based ...
收藏 引用
11th Pacific-Asia Conference on knowledge Discovery and Data Mining
作者: Zhang, Xueping Wang, Jiayao Wu, Mingguang Cheng, Yi Henan Univ Technol Sch Informat Sci & Engn Zhengzhou 450052 Peoples R China PLA Informat Engn Univ Sch Surveying & Mapping Zhengzhou 450052 Peoples R China Liaoning Tech Univ Geomat & Applicat Lab Fuxing 123000 Peoples R China
In this paper, we discuss the problem of spatial clustering with obstacles constraints and propose a novel spatial clustering method based on PSO and k-medoids, called PkSCOC, which aims to cluster spatial data with o... 详细信息
来源: 评论
Genetic k-medoids spatial clustering with obstacles constraints
Genetic K-Medoids spatial clustering with obstacles constrai...
收藏 引用
3rd IEEE International Conference on Intelligent Systems
作者: Zhang, Xueping Wang, Jiayao Wu, Fang Fan, Zhongshan Xu, Wenbo Zhengzhou Univ PLA Inst Surveying & Mapping Zhengzhou 450052 Henan Peoples R China PLA Informat Engn Univ Inst Survey & Mapp Zhengzhou Peoples R China Henan Acad Traff Sci & Technol Zhengzhou Peoples R China So Yangtze Univ Sch Informat Technol Wuxi 214122 Jiangsu Peoples R China So Yangtze Univ Sch Informat Technol Wuxi 214122 Jiangsu Peoples R China
Spatial clustering is an important research topic in Spatial Data Mining (SDM). It is not only an important effective method but also a prelude of other task for SDM. Grouping similar data in large 2-dimensional space... 详细信息
来源: 评论
Text Clustering Method Based on k-medoids Social Evolutionary Programming
Text Clustering Method Based on K-medoids Social Evolutionar...
收藏 引用
Conference on Electronic Commerce, Web Application and Communication
作者: Hao, ZhanGang Shandong Inst Business & Technol Yantai 264005 Shandong Peoples R China
This article presents a improved social evolutionary programming. The algorithm is the k-medoids algorithm as the main cognitive reasoning algorithm, and improved to learning of Paradigm. Optimal paradigm strengthenin... 详细信息
来源: 评论
k-center algorithm for hierarchical binary template matching
收藏 引用
PATTERN RECOGNITION LETTERS 2019年 125卷 584-590页
作者: Jung, Ho Gi Korea Natl Univ Transportat Dept Elect Engn 50 Daehak Ro Chungju Si 27469 Chungbuk South Korea
To construct a hierarchical template tree of binary templates, the dissimilarity between templates was defined using distance transform, and a k-medoid algorithm was applied to select the representative of a template ... 详细信息
来源: 评论
Natural gas pipeline valve leakage rate estimation via factor and cluster analysis of acoustic emissions
收藏 引用
MEASUREMENT 2018年 125卷 48-55页
作者: Zhu, Shen-Bin Li, Zhen-Lin Zhang, Shi-Min Liang, Le-Le Zhang, Hai-Feng China Univ Petr Coll Mech & Transportat Engn Beijing 102249 Peoples R China PetroChina Pipeline R&D Ctr Langfang 065000 Peoples R China
This paper estimates the leakage rate of a valve in a natural gas pipeline via factor and cluster analysis of acoustic emission signals. Factor analysis was used to reduce the amount of redundant information in the hi... 详细信息
来源: 评论
Enhanced Neuro-Fuzzy-Based Crop Ontology for Effective Information Retrieval
收藏 引用
Computer Systems Science & Engineering 2022年 第5期41卷 569-582页
作者: k.Ezhilarasi G.Maria kalavathy Computer sceince and Engineering Anna universityChennai600025India Computer sceince and Engineering St.Joseph’s College of EngineeringChennai600119India
Ontology is the progression of interpreting the conceptions of the information domain for an assembly of *** ontology as information retrieval(IR)aids in augmenting the searching effects of user-required relevant *** ... 详细信息
来源: 评论