咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
  • 3 篇 理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 数学
    • 1 篇 生物学
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 8 篇 kernel algorithm...
  • 3 篇 support vector m...
  • 2 篇 wavelets
  • 2 篇 water supply
  • 1 篇 thresholding met...
  • 1 篇 dictionary
  • 1 篇 random forest
  • 1 篇 online kernel ad...
  • 1 篇 super-resolution...
  • 1 篇 5 fold cross val...
  • 1 篇 linear-threshold...
  • 1 篇 virtual screenin...
  • 1 篇 semi-parametric ...
  • 1 篇 ensemble algorit...
  • 1 篇 selective sampli...
  • 1 篇 high-resolution ...
  • 1 篇 non-parametric r...
  • 1 篇 filtering theory
  • 1 篇 extended kernel ...
  • 1 篇 support vector m...

机构

  • 2 篇 aristotle univ t...
  • 1 篇 natl inst stat s...
  • 1 篇 univ thessaly vo...
  • 1 篇 univ east london...
  • 1 篇 univ oxford dept...
  • 1 篇 hamilton gen hos...
  • 1 篇 laboratoire de p...
  • 1 篇 univ waterloo de...
  • 1 篇 democritus univ ...
  • 1 篇 univ milan dti i...
  • 1 篇 democritus univ ...
  • 1 篇 univ insubria di...
  • 1 篇 univ calif los a...
  • 1 篇 the institute of...
  • 1 篇 univ milan dsi i...
  • 1 篇 univ santiago de...
  • 1 篇 laboratoire de s...
  • 1 篇 cochin univ sci ...
  • 1 篇 univ santiago de...

作者

  • 1 篇 iliadis lazaros
  • 1 篇 tachos stavros
  • 1 篇 zygmunt hasiewic...
  • 1 篇 cesa-bianchi nic...
  • 1 篇 iliadis l.
  • 1 篇 spartali iliana
  • 1 篇 sejdinovic dino
  • 1 篇 vassileiou apost...
  • 1 篇 zhu mu
  • 1 篇 tachos s.
  • 1 篇 vidal juan c.
  • 1 篇 maris f.
  • 1 篇 yuan fei
  • 1 篇 zaniboni luca
  • 1 篇 loukas athanasio...
  • 1 篇 padilla oscar he...
  • 1 篇 young s. stanley
  • 1 篇 parambil abdulla
  • 1 篇 anver jesna
  • 1 篇 maris fotis

语言

  • 8 篇 英文
检索条件"主题词=kernel algorithms"
8 条 记 录,以下是1-10 订阅
排序:
kernel biclustering algorithm in Hilbert spaces
收藏 引用
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION 2025年 1-42页
作者: Matabuena, Marcos Vidal, Juan C. Padilla, Oscar Hernan Madrid Sejdinovic, Dino Univ Santiago de Compostela Ctr Singular Invest Tecnoloxias Intelixentes CiTIU Santiago De Compostela Spain Univ Santiago de Compostela Dept Elect & Comp Santiago De Compostela Spain Univ Calif Los Angeles Dept Stat Los Angeles CA USA Univ Oxford Dept Stat Oxford England
Biclustering algorithms partition data and covariates simultaneously, providing new insights in several domains, such as analyzing gene expression to discover new biological functions. This paper develops a new model-... 详细信息
来源: 评论
Single-image super-resolution using online kernel adaptive filters
收藏 引用
IET IMAGE PROCESSING 2019年 第11期13卷 1846-1852页
作者: Anver, Jesna Parambil, Abdulla Cochin Univ Sci & Technol Div Elect Kochi Kerala India
The online kernel adaptive filters are non-linear filters which provide impulse response and are more efficient compared to other kernel algorithms. The performance of kernel adaptive filters depends on dictionary siz... 详细信息
来源: 评论
Support Vector Machines-kernel algorithms for the Estimation of the Water Supply in Cyprus
Support Vector Machines-Kernel Algorithms for the Estimation...
收藏 引用
20th International Conference on Artificial Neural Networks
作者: Maris, Fotis Iliadis, Lazaros Tachos, Stavros Loukas, Athanasios Spartali, Iliana Vassileiou, Apostolos Pimenidis, Elias Democritus Univ Thrace Greece Komotini Greece Aristotle Univ Thessaloniki Thessaloniki Greece Univ Thessaly Volos Greece Univ East London London England
This research effort aimed in the estimation of the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. The actual target was the development of an c-Regression Support Vector Machin... 详细信息
来源: 评论
Chemical Descriptors Are More Important Than Learning algorithms for Modelling
收藏 引用
MOLECULAR INFORMATICS 2012年 第10期31卷 707-710页
作者: Young, S. Stanley Yuan, Fei Zhu, Mu Natl Inst Stat Sci Res Triangle Pk NC 27709 USA Hamilton Gen Hosp McMaster Clin Populat Hlth Res Inst Hamilton ON L8L 2X2 Canada Univ Waterloo Dept Stat & Actuarial Sci Waterloo ON N2L 3G1 Canada
来源: 评论
Soft computing techniques toward modeling the water supplies of Cyprus
收藏 引用
NEURAL NETWORKS 2011年 第8期24卷 836-841页
作者: Iliadis, L. Maris, F. Tachos, S. Democritus Univ Thrace Dept Forestry & Management Environm & Nat Resourc N Orestiada 68200 Greece Aristotle Univ Thessaloniki Thessaloniki Greece
This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the... 详细信息
来源: 评论
Density estimation with quadratic loss: A confidence intervals method
收藏 引用
ESAIM - Probability and Statistics 2008年 第1期12卷 438-463页
作者: Alquier, Pierre Laboratoire de Probabilités et Modèles Aléatoires Université Paris 6 France Laboratoire de Statistique CREST 3 avenue Pierre Larousse 92240 Malakoff France
We propose a feature selection method for density estimation with quadratic loss. This method relies on the study of unidimensional approximation models and on the definition of confidence regions for the density than... 详细信息
来源: 评论
Nonlinear system identification under various prior knowledge
收藏 引用
IFAC Proceedings Volumes 2008年 第2期41卷 7849-7858页
作者: Zygmunt Hasiewicz Przemys law Śliwiński Grzegorz Mzyk The Institute of Computer Engineering Control and Robotics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wroc law Poland
In the note the class of block-oriented dynamic nonlinear systems is considered, in particular, Hammerstein and Wiener systems are investigated. Several algorithms for nonlinear system identification are presented. Th... 详细信息
来源: 评论
Worst-case analysis of selective sampling for linear classification
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2006年 第7期7卷 1205-1230页
作者: Cesa-Bianchi, Nicolo Gentile, Claudio Zaniboni, Luca Univ Milan DSI I-20135 Milan Italy Univ Insubria DICOM I-21100 Varese Italy Univ Milan DTI I-26013 Crema Italy
A selective sampling algorithm is a learning algorithm for classification that, based on the past observed data, decides whether to ask the label of each new instance to be classified. In this paper, we introduce a ge... 详细信息
来源: 评论