咨询与建议

限定检索结果

文献类型

  • 360 篇 期刊文献
  • 224 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 589 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 535 篇 工学
    • 250 篇 计算机科学与技术...
    • 167 篇 电气工程
    • 120 篇 控制科学与工程
    • 55 篇 仪器科学与技术
    • 46 篇 信息与通信工程
    • 45 篇 机械工程
    • 40 篇 软件工程
    • 31 篇 石油与天然气工程
    • 26 篇 化学工程与技术
    • 22 篇 材料科学与工程(可...
    • 21 篇 生物医学工程(可授...
    • 19 篇 电子科学与技术(可...
    • 15 篇 动力工程及工程热...
    • 15 篇 环境科学与工程(可...
    • 10 篇 土木工程
    • 9 篇 生物工程
    • 6 篇 测绘科学与技术
    • 6 篇 核科学与技术
  • 120 篇 理学
    • 38 篇 数学
    • 28 篇 生物学
    • 27 篇 物理学
    • 26 篇 化学
    • 24 篇 统计学(可授理学、...
    • 10 篇 系统科学
    • 8 篇 地球物理学
  • 63 篇 管理学
    • 58 篇 管理科学与工程(可...
  • 45 篇 医学
    • 26 篇 临床医学
    • 20 篇 基础医学(可授医学...
  • 13 篇 农学
    • 6 篇 作物学
  • 11 篇 经济学
    • 11 篇 应用经济学
  • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 589 篇 kernel principal...
  • 51 篇 feature extracti...
  • 50 篇 principal compon...
  • 49 篇 support vector m...
  • 45 篇 fault diagnosis
  • 38 篇 fault detection
  • 23 篇 support vector m...
  • 23 篇 particle swarm o...
  • 20 篇 machine learning
  • 14 篇 face recognition
  • 12 篇 random forest
  • 11 篇 kernel methods
  • 11 篇 anomaly detectio...
  • 11 篇 kernel function
  • 10 篇 extreme learning...
  • 10 篇 classification
  • 9 篇 intrusion detect...
  • 9 篇 dimensionality r...
  • 9 篇 pattern recognit...
  • 9 篇 kernel

机构

  • 5 篇 china univ petr ...
  • 5 篇 texas a&m univ q...
  • 4 篇 harbin inst tech...
  • 4 篇 pohang univ sci ...
  • 4 篇 texas a&m univ q...
  • 4 篇 yunnan univ sch ...
  • 3 篇 mississippi stat...
  • 3 篇 northeastern uni...
  • 3 篇 xi an jiao tong ...
  • 3 篇 henan polytech u...
  • 3 篇 univ sci & techn...
  • 3 篇 univ jinan sch i...
  • 3 篇 univ york dept e...
  • 3 篇 zhejiang univ co...
  • 2 篇 nanjing normal u...
  • 2 篇 hefei univ techn...
  • 2 篇 jilin univ coll ...
  • 2 篇 univ douala lab ...
  • 2 篇 th ingolstadt in...
  • 2 篇 tongji univ stat...

作者

  • 8 篇 deng xiaogang
  • 6 篇 mansouri majdi
  • 6 篇 nounou hazem
  • 5 篇 tian xuemin
  • 5 篇 nounou mohamed
  • 5 篇 li wei
  • 4 篇 mercer andrew
  • 4 篇 fezai radhia
  • 4 篇 wang shunfang
  • 4 篇 tanaka toshihisa
  • 4 篇 tian zhongda
  • 4 篇 lee ib
  • 4 篇 chen yinsheng
  • 4 篇 andrew mercer
  • 3 篇 wang lei
  • 3 篇 li xin
  • 3 篇 gao kangping
  • 3 篇 tan zhiying
  • 3 篇 kim hj
  • 3 篇 kim ki

语言

  • 558 篇 英文
  • 19 篇 其他
  • 12 篇 中文
  • 1 篇 法文
检索条件"主题词=kernel principal component analysis"
589 条 记 录,以下是1-10 订阅
排序:
Near-optimal quantum kernel principal component analysis
收藏 引用
QUANTUM SCIENCE AND TECHNOLOGY 2025年 第1期10卷
作者: Wang, Youle Nanjing Univ Informat Sci & Technol Sch Software Nanjing 210044 Peoples R China
kernel principal component analysis (kernel PCA) is a nonlinear dimensionality reduction technique that employs kernel functions to map data into a high-dimensional feature space, thereby extending the applicability o... 详细信息
来源: 评论
kernel principal component analysis combining rotation forest method for linearly inseparable data
收藏 引用
COGNITIVE SYSTEMS RESEARCH 2019年 53卷 111-122页
作者: Lu, Huijuan Meng, Yaqiong Yan, Ke Gao, Zhigang China Jiliang Univ Coll Informat Engn Hangzhou 310018 Zhejiang Peoples R China Hangzhou Dianzi Univ Coll Comp Sci Hangzhou 310018 Zhejiang Peoples R China
Rotation forest (RoF) is an ensemble classifier combining linear analysis theories and decision tree algorithms. In recent existing works, RoF was widely applied to various fields with outstanding performance compared... 详细信息
来源: 评论
kernel principal component analysis-based least squares support vector machine optimized by improved grey wolf optimization algorithm and application in dynamic liquid level forecasting of beam pump
收藏 引用
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL 2020年 第6期42卷 1135-1150页
作者: Tian Zhongda Shenyang Univ Technol Coll Informat Sci & Engn Shenyang 110870 Liaoning Peoples R China
Considering the blind parameters selection and the high dimension of input data in least squares support vector machine (LSSVM) modeling process, a kernel principal component analysis (KPCA)-based LSSVM forecasting me... 详细信息
来源: 评论
kernel principal component analysis for texture classification
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2001年 第2期8卷 39-41页
作者: Kim, KI Park, SH Kim, HJ Kyungpook Natl Univ Dept Comp Engn Taegu 702701 South Korea
kernel principal component analysis (PCA) has recently been proposed as a nonlinear extension of PCA. The basic idea Is to first map the input space into a feature space via a nonlinear map and then compute the princi... 详细信息
来源: 评论
kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
收藏 引用
COMPUTERS & STRUCTURES 2020年 241卷
作者: Zhou, Tong Peng, Yongbo Tongji Univ State Key Lab Disaster Reduct Civil Engn 1239 Siping Rd Shanghai 200092 Peoples R China Tongji Univ Coll Civil Engn Shanghai 200092 Peoples R China Tongji Univ Shanghai Inst Disaster Prevent & Relief Shanghai 200092 Peoples R China
An efficient reliability method is presented to address the challenge inherent in the high-dimensional reliability analysis. The critical contribution is an elegant implementation of combining the kernel principal com... 详细信息
来源: 评论
kernel principal component analysis fault diagnosis method based on improving Golden Jackal optimization algorithm
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING 2024年 第5期238卷 874-887页
作者: Zhang, Ruicheng Sun, Weiliang Liang, Weizheng North China Univ Sci & Technol Coll Elect Engn Tangshan Peoples R China North China Univ Sci & Technol Coll Elect Engn Tangshan 063210 Hebei Peoples R China
Aiming at the shortcomings of the Golden Jackal optimization algorithm, such as low convergence accuracy and easy falling into the optimal local solution, an improved Golden Jackal optimization algorithm was proposed.... 详细信息
来源: 评论
kernel principal component analysis for stochastic input model generation
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2011年 第19期230卷 7311-7331页
作者: Ma, Xiang Zabaras, Nicholas Cornell Univ Sibley Sch Mech & Aerosp Engn Mat Proc Design & Control Lab Ithaca NY 14853 USA
Stochastic analysis of random heterogeneous media provides useful information only if realistic input models of the material property variations are used. These input models are often constructed from a set of experim... 详细信息
来源: 评论
kernel principal component analysis FOR THE CONSTRUCTION OF THE EXTENDED MORPHOLOGICAL PROFILE
KERNEL PRINCIPAL COMPONENT ANALYSIS FOR THE CONSTRUCTION OF ...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium
作者: Fauvel, M. Chanussot, J. Benediktsson, J. A. INRIA Rhones Alpes MISTIS Grenoble France
kernel principal component, analysis (KPCA) is investigated for feature extraction from hyperspectral remote-sensing data. Features extracted using KPCA are used to construct. the Extended Morphological Profile (EM P)... 详细信息
来源: 评论
kernel principal component analysis OF THE EAR MORPHOLOGY
KERNEL PRINCIPAL COMPONENT ANALYSIS OF THE EAR MORPHOLOGY
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zolfaghari, Reza Epain, Nicolas Jin, Craig T. Glaunes, Joan Tew, Anthony Univ Sydney CARLab Sch Elect & Informat Engn Sydney NSW Australia IRT B Com 1219 Ave Champs Blancs F-35510 Cesson Sevigne France Univ York Dept Elect York N Yorkshire England Univ Paris 05 Sorbonne Paris Cites MAP5 F-75006 Paris France
This paper describes features in the ear shape that change across a population of ears and explores the corresponding changes in ear acoustics. The statistical analysis conducted over the space of ear shapes uses a ke... 详细信息
来源: 评论
kernel principal component analysis: Applications, Implementation and Comparison
收藏 引用
2nd International Conference on Network analysis
作者: Olsson, Daniel Georgiev, Pando Pardalos, Panos M. Royal Inst Technol KTH Stockholm Sweden Univ Florida Ctr Appl Optimizat Gainesville FL 32611 USA
kernel principal component analysis (KPCA) is a dimension reduction method that is closely related to principal component analysis (PCA). This report gives an overview of kernel PCA and presents an implementation of t... 详细信息
来源: 评论