咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 13 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 4 篇 信息与通信工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 4 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 地理学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 3 篇 医学
    • 3 篇 临床医学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 24 篇 large-scale data...
  • 4 篇 mapreduce
  • 3 篇 hadoop
  • 3 篇 cloud computing
  • 2 篇 big data
  • 2 篇 kernel methods
  • 2 篇 program composit...
  • 2 篇 service composit...
  • 2 篇 seeds
  • 2 篇 machine learning
  • 2 篇 kernel
  • 2 篇 optical computin...
  • 2 篇 random projectio...
  • 1 篇 supercomputing
  • 1 篇 space complexiti...
  • 1 篇 performance
  • 1 篇 runtime
  • 1 篇 noise reduction
  • 1 篇 tensor decomposi...
  • 1 篇 clustering

机构

  • 2 篇 natl taiwan univ...
  • 1 篇 univ pierre & ma...
  • 1 篇 institut langevi...
  • 1 篇 zhongguancun lab...
  • 1 篇 espci inst lange...
  • 1 篇 natl inst inform...
  • 1 篇 microsoft dev ct...
  • 1 篇 oak ridge natl l...
  • 1 篇 wuhan univ sch r...
  • 1 篇 cnrs umr 8552 la...
  • 1 篇 china univ min &...
  • 1 篇 nagoya inst tech...
  • 1 篇 psl res univ f-7...
  • 1 篇 guangdong hong k...
  • 1 篇 simon fraser uni...
  • 1 篇 nagoya inst tech...
  • 1 篇 ensta bretagne f...
  • 1 篇 chinese acad sci...
  • 1 篇 lab sticc umr 62...
  • 1 篇 cnrs umr 8550 la...

作者

  • 2 篇 torisawa kentaro
  • 2 篇 leu jenq-shiou
  • 2 篇 tanaka masahiro
  • 2 篇 shih hsin-yu
  • 1 篇 uygun yasin
  • 1 篇 dos santos ferna...
  • 1 篇 taura kenjiro
  • 1 篇 sun weijun
  • 1 篇 datskova olga
  • 1 篇 zhang weikang
  • 1 篇 taurat kenjiro
  • 1 篇 a. drémeau
  • 1 篇 gigan s.
  • 1 篇 vijaykumar t. n.
  • 1 篇 fang shenghui
  • 1 篇 dreesen philippe
  • 1 篇 huang jhih-jia
  • 1 篇 zhou yuan
  • 1 篇 wang chao
  • 1 篇 zhou guoxu

语言

  • 24 篇 英文
检索条件"主题词=large-scale data processing"
24 条 记 录,以下是1-10 订阅
排序:
Review of classical dimensionality reduction and sample selection methods for large-scale data processing
收藏 引用
NEUROCOMPUTING 2019年 328卷 5-15页
作者: Xu, Xinzheng Liang, Tianming Zhu, Jiong Zheng, Dong Sun, Tongfeng China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China Guangxi High Sch Key Lab Complex Syst & Computat Nanning 530006 Guangxi Peoples R China
In the era of big data, all types of data with increasing samples and high-dimensional attributes are demonstrating their important roles in various fields, such as data mining, pattern recognition and machine learnin... 详细信息
来源: 评论
large-scale data processing software and performance instabilities within HEP grid environments
收藏 引用
INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING 2019年 第4期10卷 402-414页
作者: Datskova, Olga Shi, Wedong Univ Houston Dept Comp Sci Houston TX 77204 USA
large tasks running on grids and clouds have introduced a need for stability guarantees from geographically spanning resources, where failures are handled pre-emptively. Detecting performance inefficiencies in such ca... 详细信息
来源: 评论
On the large-scale Graph data processing for User Interface Testing in Big data Science Projects  8
On the Large-scale Graph Data Processing for User Interface ...
收藏 引用
8th IEEE International Conference on Big data (Big data)
作者: Uygun, Yasin Oguz, Ramazan Faruk Olmezogullari, Erdi Aktas, Mehmet S. Yildiz Tecn Univ Comp Engn Istanbul Turkey Microsoft Dev Ctr Oslo Norway
In functional User Interface testing, test scenarios are written with respect to the requirements that are specified by test analysts. Usually, a test analyst focuses on base URLs and HTML components while collecting ... 详细信息
来源: 评论
Efficient and Portable Distribution Modeling for large-scale Scientific data processing with data-Parallel Primitives
收藏 引用
ALGORITHMS 2021年 第10期14卷 285页
作者: Yang, Hao-Yi Lin, Zhi-Rong Wang, Ko-Chih Natl Taiwan Normal Univ Dept Comp Sci & Informat Engn Taipei 11677 Taiwan
The use of distribution-based data representation to handle large-scale scientific datasets is a promising approach. Distribution-based approaches often transform a scientific dataset into many distributions, each of ... 详细信息
来源: 评论
Text Filtering for Harmful Document Classification Using Three-Word Co-Occurrence and large-scale data processing
收藏 引用
ELECTRONICS AND COMMUNICATIONS IN JAPAN 2015年 第10期98卷 31-40页
作者: Otsuka, Takanobu Deng, Deyue Ito, Takayuki Nagoya Inst Technol Gokiso Grad Sch Informat Sci Nagoya Aichi Japan Nagoya Inst Technol Gokiso Master Technobusiness Adm Program Nagoya Aichi Japan
Young people are increasingly using the Internet. However, this creates the problem that the material they encounter may adversely affect them. Therefore we propose a method of automatically classifying harmful senten... 详细信息
来源: 评论
data processing Pipeline of Short-Term Depression Detection with large-scale dataset
Data Processing Pipeline of Short-Term Depression Detection ...
收藏 引用
IEEE International Conference on Big data and Smart Computing (BigComp)
作者: Lee, Yonggeon Noh, Youngtae Lee, Uichin KENTECH Energy AI Naju Jeollanam Do South Korea Korea Adv Inst Sci & Technol Sch Comp Daejeon South Korea
Depression is a common, recurring mental disorder that causes significant impairment in people's lives. In recent years, ubiquitous computing using mobile phones can monitor behavioral patterns relevant to depress... 详细信息
来源: 评论
Parallel Optimization for large scale Interferometric Synthetic Aperture Radar data processing
收藏 引用
REMOTE SENSING 2023年 第7期15卷 1850页
作者: Zhang, Weikang You, Haihang Wang, Chao Zhang, Hong Tang, Yixian Chinese Acad Sci Inst Comp Technol State Key Lab Processors Beijing 100190 Peoples R China Zhongguancun Lab Beijing 100094 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Key Lab Digital Earth Sci Beijing 100094 Peoples R China
Interferometric synthetic aperture radar (InSAR) has developed rapidly over the past years and is considered as an important method for surface deformation monitoring, benefiting from growing data quantities and impro... 详细信息
来源: 评论
An automated parallel genetic algorithm with parametric adaptation for distributed data analysis
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-16页
作者: Al-Terkawi, Laila Migliavacca, Matteo Int Univ Kuwait IUK Al Ardiya Kuwait Univ Kent Sch Comp Canterbury England
Unleashing the potential of large-scale data analysis requires advanced computational methods capable of managing the immense size and complexity of distributed data. Genetic algorithms (GAs), known for their adaptabi... 详细信息
来源: 评论
Efficient Management and processing of Massive InSAR Images Using an HPC-Based Cloud Platform
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2024年 17卷 2866-2876页
作者: Wu, Zherong Ma, Peifeng Zhang, Xinyang Ye, Guangen Cornell Univ Sch Integrat Plant Sci Ithaca NY 14853 USA Chinese Univ Hong Kong Inst Space & Earth Informat Sci Shatin Hong Kong Peoples R China Chinese Univ Hong Kong Dept Geog & Resource Management Hong Kong Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Shenzhen 518057 Peoples R China
Significant progress has occurred in interferometric synthetic aperture radar (InSAR), emerging as a crucial technique for monitoring surface deformation. This evolution is attributed to expanded synthetic aperture ra... 详细信息
来源: 评论
Towards efficient and accurate approximation: tensor decomposition based on randomized block Krylov iteration
收藏 引用
SIGNAL IMAGE AND VIDEO processing 2024年 第8-9期18卷 6287-6297页
作者: Qiu, Yichun Sun, Weijun Zhou, Guoxu Zhao, Qibin Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China Guangdong Hong Kong Macao Joint Lab Smart Discrete Hong Kong 510006 Guangdong Peoples R China Minist Educ Key Lab Intelligent Detect & Internet Things Mfg Guangzhou 510006 Peoples R China Minist Educ Joint Int Res Lab Intelligent Informat Proc & Syst Guangzhou 510006 Peoples R China RIKEN Ctr Adv Intelligence Project AIP Tokyo 1030027 Japan
Tensor decomposition methods are inefficient when dealing with low-rank approximation of large-scale data. Randomized tensor decomposition has emerged to meet this need, but most existing methods exhibit high computat... 详细信息
来源: 评论