咨询与建议

限定检索结果

文献类型

  • 3 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 电气工程
    • 1 篇 计算机科学与技术...
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 3 篇 large-scale kern...
  • 2 篇 deep neural netw...
  • 2 篇 speech recogniti...
  • 1 篇 deep learning
  • 1 篇 speech enhanceme...
  • 1 篇 random fourier f...
  • 1 篇 exponential powe...
  • 1 篇 one-vs-one multi...
  • 1 篇 distributed comp...
  • 1 篇 random features
  • 1 篇 automatic hyper-...

机构

  • 1 篇 ibm corp t j wat...
  • 1 篇 univ illinois de...
  • 1 篇 ohio state univ ...
  • 1 篇 ibm corp thomas ...
  • 1 篇 coll william & m...

作者

  • 2 篇 ramabhadran bhuv...
  • 1 篇 kingsbury brian
  • 1 篇 sainath tara n.
  • 1 篇 hui like
  • 1 篇 wu lingfei
  • 1 篇 avron haim
  • 1 篇 sindhwani vikas
  • 1 篇 audhkhasi kartik
  • 1 篇 belkin mikhail
  • 1 篇 ma siyuan
  • 1 篇 chen jie
  • 1 篇 huang po-sen

语言

  • 3 篇 英文
检索条件"主题词=large-scale kernel machines"
3 条 记 录,以下是1-10 订阅
排序:
kernel machines Beat Deep Neural Networks on Mask-based Single-channel Speech Enhancement  20
Kernel Machines Beat Deep Neural Networks on Mask-based Sing...
收藏 引用
Interspeech Conference
作者: Hui, Like Ma, Siyuan Belkin, Mikhail Ohio State Univ Dept Comp Sci & Engn Columbus OH 43210 USA
We apply a fast kernel method for mask-based single-channel speech enhancement. Specifically, our method solves a kernel regression problem associated to a non-smooth kernel function (exponential power kernel) with a ... 详细信息
来源: 评论
EFFICIENT ONE-VS-ONE kernel RIDGE REGRESSION FOR SPEECH RECOGNITION  41
EFFICIENT ONE-VS-ONE KERNEL RIDGE REGRESSION FOR SPEECH RECO...
收藏 引用
41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Chen, Jie Wu, Lingfei Audhkhasi, Kartik Kingsbury, Brian Ramabhadran, Bhuvana IBM Corp Thomas J Watson Res Ctr Yorktown Hts NY 10598 USA Coll William & Mary Dept Comp Sci Williamsburg VA 23185 USA
Recent evidences suggest that the performance of kernel methods may match that of deep neural networks (DNNs), which have been the state-of-the-art approach for speech recognition. In this work, we present an improvem... 详细信息
来源: 评论
kernel METHODS MATCH DEEP NEURAL NETWORKS ON TIMIT
KERNEL METHODS MATCH DEEP NEURAL NETWORKS ON TIMIT
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Huang, Po-Sen Avron, Haim Sainath, Tara N. Sindhwani, Vikas Ramabhadran, Bhuvana Univ Illinois Dept Elect & Comp Engn 1406 W Green St Urbana IL 61801 USA IBM Corp T J Watson Res Ctr Yorktown Hts NY USA
Despite their theoretical appeal and grounding in tractable convex optimization techniques, kernel methods are often not the first choice for large-scale speech applications due to their significant memory requirement... 详细信息
来源: 评论