咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 transformer
  • 1 篇 learnable image ...
  • 1 篇 low-light image ...

机构

  • 1 篇 shenzhen inst ar...
  • 1 篇 shenzhen univ gu...
  • 1 篇 coll shandong fu...
  • 1 篇 shenzhen inst ar...
  • 1 篇 shenzhen univ na...
  • 1 篇 jinan univ coll ...
  • 1 篇 shenzhen univ co...

作者

  • 1 篇 zhou jie
  • 1 篇 shen linlin
  • 1 篇 liang zhuoqian
  • 1 篇 lai zhihui
  • 1 篇 wu xu
  • 1 篇 yu shiqi

语言

  • 1 篇 英文
检索条件"主题词=learnable image processing operators"
1 条 记 录,以下是1-10 订阅
排序:
Coarse-to-Fine Low-Light image Enhancement With Light Restoration and Color Refinement
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2024年 第1期8卷 591-603页
作者: Wu, Xu Lai, Zhihui Yu, Shiqi Zhou, Jie Liang, Zhuoqian Shen, Linlin Shenzhen Univ Comp Vis Inst Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518060 Peoples R China Shenzhen Univ Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc SZU Branch Shenzhen 518060 Peoples R China Coll Shandong Future Networks Res Inst Jinan 250002 Shandong Peoples R China Jinan Univ Coll Informat Sci & Technol Guangzhou 510632 Peoples R China
Low-light image enhancement aims to improve the illumination intensity while restoring color information. Despite recent advancements using deep learning methods, they still struggle with over or under-exposure in com... 详细信息
来源: 评论