咨询与建议

限定检索结果

文献类型

  • 8,540 篇 会议
  • 4,560 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,660 篇 工学
    • 11,853 篇 计算机科学与技术...
    • 9,463 篇 软件工程
    • 1,724 篇 生物工程
    • 1,636 篇 信息与通信工程
    • 1,453 篇 控制科学与工程
    • 1,177 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 349 篇 机械工程
    • 339 篇 光学工程
    • 321 篇 电子科学与技术(可...
    • 306 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 202 篇 动力工程及工程热...
    • 178 篇 仪器科学与技术
    • 141 篇 土木工程
  • 5,662 篇 理学
    • 3,329 篇 数学
    • 1,896 篇 生物学
    • 1,285 篇 统计学(可授理学、...
    • 790 篇 物理学
    • 670 篇 系统科学
    • 241 篇 化学
  • 2,166 篇 管理学
    • 1,359 篇 图书情报与档案管...
    • 869 篇 管理科学与工程(可...
    • 434 篇 工商管理
  • 664 篇 医学
    • 518 篇 基础医学(可授医学...
    • 515 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 333 篇 法学
    • 317 篇 社会学
  • 187 篇 教育学
    • 177 篇 教育学
  • 155 篇 经济学
    • 150 篇 应用经济学
  • 137 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,111 篇 learning algorit...
  • 100 篇 neural networks
  • 82 篇 learning
  • 69 篇 machine learning
  • 46 篇 algorithms
  • 45 篇 neural network
  • 29 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 25 篇 reward
  • 24 篇 optimization
  • 24 篇 game theory
  • 24 篇 classification
  • 24 篇 classifiers
  • 23 篇 network models
  • 23 篇 iterative method...
  • 22 篇 dataset
  • 22 篇 artificial neura...
  • 21 篇 reinforcement le...
  • 19 篇 feature extracti...

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...
  • 18 篇 stanford univ st...

作者

  • 23 篇 mohri mehryar
  • 21 篇 liu yang
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 liu tongliang
  • 12 篇 bengio yoshua
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...
  • 10 篇 liu bo

语言

  • 12,796 篇 英文
  • 160 篇 其他
  • 97 篇 中文
  • 19 篇 法文
  • 14 篇 土耳其文
  • 10 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=learning algorithms"
13111 条 记 录,以下是91-100 订阅
排序:
Fast Convergence of Online Pairwise learning algorithms  19
Fast Convergence of Online Pairwise Learning Algorithms
收藏 引用
19th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Boissier, Martin Lyu, Siwei Ying, Yiming Zhou, Ding-Xuan City Univ Hong Kong Dept Math Hong Kong Peoples R China SUNY Albany Dept Comp Sci Albany NY 12222 USA SUNY Albany Dept Math & Stat Albany NY 12222 USA
Pairwise learning usually refers to a learning task which involves a loss function depending on pairs of examples, among which most notable ones are bipartite ranking, metric learning and AUC maximization. In this pap... 详细信息
来源: 评论
Calcification descriptor and relevance feedback learning algorithms for content-based mammogram retrieval
收藏 引用
8th International Workshop on Digital Mammography
作者: Wei, Chia-Hung Li, Chang-Tsun Univ Warwick Dept Comp Sci Coventry CV4 7AL W Midlands England
In recent years a large number of digital mammograms have been generated in hospitals and breast screening centers. To assist diagnosis through indexing those mammogram databases, we proposed a content-based image ret... 详细信息
来源: 评论
The QV Family Compared to Other Reinforcement learning algorithms
The QV Family Compared to Other Reinforcement Learning Algor...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning
作者: Wiering, Marco A. van Hasselt, Hado Univ Groningen Dept Artificial Intelligence NL-9700 AB Groningen Netherlands Univ Utrecht Intelligent Syst Grp NL-3508 TC Utrecht Netherlands
This paper describes several new online model-free reinforcement learning (RL) algorithms. We designed three new reinforcement algorithms, namely: QV2, QVMAX, and QV-MAX2, that are all based on the QV-learning algorit... 详细信息
来源: 评论
Privacy Preserving Frequency-Based learning algorithms in Two-Part Partitioned Record Model  5
收藏 引用
5th International Conference on Knowledge and Systems Engineering (KSE)
作者: The Dung Luong Dang Hung Tran Academy of Cryotographic Techniques Viet Nam Hanoi National University of Education Viet Nam
In this paper, we consider a new scenario for privacy-preserving data mining called two-part partitioned record model (TPR) and find solutions for a family of frequency-based learning algorithms in TPR model. In TPR, ... 详细信息
来源: 评论
A comparison of batch and incremental supervised learning algorithms  2nd
收藏 引用
2nd European Symposium on Principles of Data Mining and Knowledge Discovery in Databases (PKDD 98)
作者: Carbonara, L Borrowman, A British Telecommun PLC Database Mkt Team London EC1N 2TE England Univ Aberdeen Kings Coll Dept Comp Sci Aberdeen AB24 3UE Scotland
This paper presents both a theoretical discussion and an experimental comparison of batch and incremental learning in an attempt to individuate some of the respective advantages and disadvantages of the two approaches... 详细信息
来源: 评论
Overview of some incremental learning algorithms
Overview of some incremental learning algorithms
收藏 引用
IEEE International Conference on Fuzzy Systems
作者: Bouchachia, Abdelhamid Gabrys, Bogdan Sahel, Zoheir Univ Klagenfurt Dept Informat Grp Software Engn & Soft Comp Univ Str 65 A-9020 Klagenfurt Austria Bournemouth Univ Sch Design Engn & Comp Computat Intelligence Res Grp Poole BH12 5BB Dorset England
Incremental learning (IL) plays a key role in many real-world applications where data arrives over time. It is mainly concerned with learning models in an ever-changing environment. In this paper, we review some of th... 详细信息
来源: 评论
On PAC learning algorithms for rich boolean function classes
On PAC learning algorithms for rich boolean function classes
收藏 引用
3rd International Conference on Theory and Applications of Models of Computation (TAMC 2006)
作者: Servedio, Rocco A. Columbia Univ Dept Comp Sci New York NY USA
We survey the fastest known algorithms for learning various expressive classes of Boolean functions in the Probably Approximately Correct (PAC) learning model.
来源: 评论
Accelerated Gradient Temporal Difference learning algorithms
Accelerated Gradient Temporal Difference Learning Algorithms
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning (ADPRL)
作者: Meyer, Dominik Degenne, Remy Omrane, Ahmed Shen, Hao Tech Univ Munich Inst Data Proc D-80290 Munich Germany
In this paper we study Temporal Difference (TD) learning with linear value function approximation. The classic TD algorithm is known to be unstable with linear function approximation and off-policy learning. Recently ... 详细信息
来源: 评论
Sample and Computationally Efficient learning algorithms under S-Concave Distributions  31
Sample and Computationally Efficient Learning Algorithms und...
收藏 引用
31st Annual Conference on Neural Information Processing Systems (NIPS)
作者: Balcan, Maria-Florina Zhang, Hongyang Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA 15213 USA
We provide new results for noise-tolerant and sample-efficient learning algorithms under s-concave distributions. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and in... 详细信息
来源: 评论
Federated Asymptotics: a model to compare federated learning algorithms  26
Federated Asymptotics: a model to compare federated learning...
收藏 引用
26th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Cheng, Gary Chadha, Karan Duchi, John Stanford Univ Stanford CA 94305 USA
We develop an asymptotic framework to compare the test performance of (personalized) federated learning algorithms whose purpose is to move beyond algorithmic convergence arguments. To that end, we study a high-dimens... 详细信息
来源: 评论