咨询与建议

限定检索结果

文献类型

  • 8,558 篇 会议
  • 4,642 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,211 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,753 篇 工学
    • 11,929 篇 计算机科学与技术...
    • 9,528 篇 软件工程
    • 1,726 篇 生物工程
    • 1,639 篇 信息与通信工程
    • 1,457 篇 控制科学与工程
    • 1,208 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 350 篇 机械工程
    • 340 篇 光学工程
    • 327 篇 电子科学与技术(可...
    • 305 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 203 篇 动力工程及工程热...
    • 181 篇 仪器科学与技术
    • 142 篇 土木工程
  • 5,687 篇 理学
    • 3,337 篇 数学
    • 1,902 篇 生物学
    • 1,289 篇 统计学(可授理学、...
    • 791 篇 物理学
    • 669 篇 系统科学
    • 243 篇 化学
  • 2,183 篇 管理学
    • 1,360 篇 图书情报与档案管...
    • 885 篇 管理科学与工程(可...
    • 441 篇 工商管理
  • 673 篇 医学
    • 522 篇 基础医学(可授医学...
    • 517 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 338 篇 法学
    • 320 篇 社会学
  • 191 篇 教育学
    • 181 篇 教育学
  • 158 篇 经济学
    • 153 篇 应用经济学
  • 141 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,211 篇 learning algorit...
  • 101 篇 neural networks
  • 91 篇 learning
  • 71 篇 machine learning
  • 59 篇 neural network
  • 49 篇 algorithms
  • 32 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 26 篇 network models
  • 26 篇 classification
  • 26 篇 reward
  • 26 篇 classifiers
  • 24 篇 iterative method...
  • 24 篇 game theory
  • 24 篇 artificial neura...
  • 23 篇 optimization
  • 22 篇 dataset
  • 21 篇 reinforcement le...
  • 19 篇 converge

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 university of pe...
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...

作者

  • 23 篇 mohri mehryar
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 19 篇 liu yang
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 bengio yoshua
  • 12 篇 liu tongliang
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 sun wen
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...

语言

  • 12,815 篇 英文
  • 239 篇 其他
  • 98 篇 中文
  • 16 篇 法文
  • 14 篇 土耳其文
  • 7 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=learning algorithms"
13211 条 记 录,以下是521-530 订阅
排序:
Understanding the Generalization Benefits of Late learning Rate Decay  27
Understanding the Generalization Benefits of Late Learning R...
收藏 引用
27th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Ren, Yinuo Ma, Chao Ying, Lexing Stanford Univ Stanford CA 94305 USA
Why do neural networks trained with large learning rates for a longer time often lead to better generalization? In this paper, we delve into this question by examining the relation between training and testing loss in... 详细信息
来源: 评论
learning Bayesian Network Classifiers to Minimize Class Variable Parameters  38
Learning Bayesian Network Classifiers to Minimize Class Vari...
收藏 引用
38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence
作者: Sugahara, Shouta Kato, Koya Ueno, Maomi Univ Electrocommun Chofu Tokyo Japan
This study proposes and evaluates a new Bayesian network classifier (BNC) having an I-map structure with the fewest class variable parameters among all structures for which the class variable has no parent. Moreover, ... 详细信息
来源: 评论
IoT Network Traffic Analysis with Deep learning
IoT Network Traffic Analysis with Deep Learning
收藏 引用
IEEE International Conference on Pervasive Computing and Communications (PerCom)
作者: Liu, Mei Yang, Leon Deakin Univ Sch IT Geelong Australia
As IoT networks become more complex and generate massive amounts of dynamic data, it is difficult to monitor and detect anomalies using traditional statistical methods and machine learning methods. Deep learning algor... 详细信息
来源: 评论
FedNS: A Fast Sketching Newton-Type Algorithm for Federated learning  38
FedNS: A Fast Sketching Newton-Type Algorithm for Federated ...
收藏 引用
38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence
作者: Li, Jian Liu, Yong Wang, Weiping Chinese Acad Sci Inst Informat Engn Beijing Peoples R China Renmin Univ China Gaoling Sch Artificial Intelligence Beijing Peoples R China
Recent Newton-type federated learning algorithms have demonstrated linear convergence with respect to the communication rounds. However, communicating Hessian matrices is often unfeasible due to their quadratic commun... 详细信息
来源: 评论
algorithms and learning for Fair Portfolio Design  21
Algorithms and Learning for Fair Portfolio Design
收藏 引用
22nd ACM Conference on Economics and Computation, EC 2021
作者: Diana, Emily Dick, Travis Elzayn, Hadi Kearns, Michael Roth, Aaron Schutzman, Zachary Sharifi-Malvajerdi, Saeed Ziani, Juba University of Pennsylvania
In this paper we initiate the study of financial asset design with fairness as an explicit goal. We consider a variation on the classical problem of optimal portfolio design. In our setting, an individual consumer is ... 详细信息
来源: 评论
Scalable learning of Item Response Theory Models  27
Scalable Learning of Item Response Theory Models
收藏 引用
27th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Frick, Susanne Krivosija, Amer Munteanu, Alexander TU Dortmund Dortmund Germany
Item Response Theory (IRT) models aim to assess latent abilities of n examinees along with latent difficulty characteristics of m test items from categorical data that indicates the quality of their corresponding answ... 详细信息
来源: 评论
Jointly Optimal Incremental learning with Self-Supervised Vision Transformers
Jointly Optimal Incremental Learning with Self-Supervised Vi...
收藏 引用
IEEE Aerospace Conference
作者: Witzgall, Hanna Leidos 4001 Fairfax Dr Arlington VA 22203 USA
Pretrained, self-supervised vision transformers are revolutionizing the field of computer vision with their ability to learn useful features for downstream classification tasks without requiring labeled training data.... 详细信息
来源: 评论
learning Broadcast Protocols  38
Learning Broadcast Protocols
收藏 引用
38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence
作者: Fisman, Dana Izsak, Noa Jacobs, Swen Ben Gurion Univ Negev Beer Sheva Israel CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany
The problem of learning a computational model from examples has been receiving growing attention. For the particularly challenging problem of learning models of distributed systems, existing results are restricted to ... 详细信息
来源: 评论
Provable local learning rule by expert aggregation for a Hawkes network  27
Provable local learning rule by expert aggregation for a Haw...
收藏 引用
27th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Jaffard, Sophie Vaiter, Samuel Muzy, Alexandre Reynaud-Bouret, Patricia Univ Cote dAzur CNRS LJAD Nice France Univ Cote dAzur Nice France
We propose a simple network of Hawkes processes as a cognitive model capable of learning to classify objects. Our learning algorithm, named HAN for Hawkes Aggregation of Neurons, is based on a local synaptic learning ... 详细信息
来源: 评论
learning Safe Action Models with Partial Observability  38
Learning Safe Action Models with Partial Observability
收藏 引用
38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence
作者: Le, Hai S. Juba, Brendan Stern, Roni Washington Univ St Louis St Louis MO 63130 USA Ben Gurion Univ Negev Beer Sheva Israel
A common approach for solving planning problems is to model them in a formal language such as the Planning Domain Definition Language (PDDL), and then use an appropriate PDDL planner. Several algorithms for learning P... 详细信息
来源: 评论