咨询与建议

限定检索结果

文献类型

  • 8,540 篇 会议
  • 4,560 篇 期刊文献
  • 8 篇 学位论文
  • 2 篇 资讯
  • 1 册 图书

馆藏范围

  • 13,111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,660 篇 工学
    • 11,853 篇 计算机科学与技术...
    • 9,463 篇 软件工程
    • 1,724 篇 生物工程
    • 1,636 篇 信息与通信工程
    • 1,453 篇 控制科学与工程
    • 1,177 篇 电气工程
    • 591 篇 生物医学工程(可授...
    • 349 篇 机械工程
    • 339 篇 光学工程
    • 321 篇 电子科学与技术(可...
    • 306 篇 化学工程与技术
    • 232 篇 安全科学与工程
    • 202 篇 动力工程及工程热...
    • 178 篇 仪器科学与技术
    • 141 篇 土木工程
  • 5,662 篇 理学
    • 3,329 篇 数学
    • 1,896 篇 生物学
    • 1,285 篇 统计学(可授理学、...
    • 790 篇 物理学
    • 670 篇 系统科学
    • 241 篇 化学
  • 2,166 篇 管理学
    • 1,359 篇 图书情报与档案管...
    • 869 篇 管理科学与工程(可...
    • 434 篇 工商管理
  • 664 篇 医学
    • 518 篇 基础医学(可授医学...
    • 515 篇 临床医学
    • 307 篇 药学(可授医学、理...
  • 333 篇 法学
    • 317 篇 社会学
  • 187 篇 教育学
    • 177 篇 教育学
  • 155 篇 经济学
    • 150 篇 应用经济学
  • 137 篇 农学
  • 81 篇 文学
  • 15 篇 艺术学
  • 13 篇 军事学
  • 3 篇 哲学
  • 1 篇 历史学

主题

  • 13,111 篇 learning algorit...
  • 100 篇 neural networks
  • 82 篇 learning
  • 69 篇 machine learning
  • 46 篇 algorithms
  • 45 篇 neural network
  • 29 篇 artificial intel...
  • 29 篇 learning (artifi...
  • 26 篇 learning systems
  • 25 篇 reward
  • 24 篇 optimization
  • 24 篇 game theory
  • 24 篇 classification
  • 24 篇 classifiers
  • 23 篇 network models
  • 23 篇 iterative method...
  • 22 篇 dataset
  • 22 篇 artificial neura...
  • 21 篇 reinforcement le...
  • 19 篇 feature extracti...

机构

  • 37 篇 university of ca...
  • 37 篇 stanford univers...
  • 32 篇 carnegie mellon ...
  • 30 篇 google research ...
  • 29 篇 uc berkeley unit...
  • 27 篇 carnegie mellon ...
  • 25 篇 columbia univers...
  • 24 篇 mit united state...
  • 24 篇 microsoft resear...
  • 23 篇 university colle...
  • 22 篇 massachusetts in...
  • 22 篇 deepmind united ...
  • 22 篇 google research
  • 21 篇 tsinghua univers...
  • 20 篇 princeton univer...
  • 20 篇 cornell universi...
  • 19 篇 deepmind
  • 18 篇 mit cambridge ma...
  • 18 篇 microsoft resear...
  • 18 篇 stanford univ st...

作者

  • 23 篇 mohri mehryar
  • 21 篇 liu yang
  • 21 篇 levine sergey
  • 20 篇 tao dacheng
  • 15 篇 moran shay
  • 14 篇 zhou zhi-hua
  • 14 篇 krause andreas
  • 14 篇 jin rong
  • 14 篇 mansour yishay
  • 14 篇 wang wei
  • 14 篇 precup doina
  • 13 篇 hanneke steve
  • 13 篇 liu tongliang
  • 12 篇 bengio yoshua
  • 11 篇 yang qiang
  • 11 篇 pontil massimili...
  • 11 篇 daumé hal
  • 11 篇 silver david
  • 11 篇 diakonikolas ili...
  • 10 篇 liu bo

语言

  • 12,796 篇 英文
  • 160 篇 其他
  • 97 篇 中文
  • 19 篇 法文
  • 14 篇 土耳其文
  • 10 篇 德文
  • 6 篇 西班牙文
  • 6 篇 日文
  • 5 篇 朝鲜文
  • 4 篇 俄文
  • 3 篇 葡萄牙文
  • 1 篇 乌克兰文
检索条件"主题词=learning algorithms"
13111 条 记 录,以下是71-80 订阅
排序:
Applications of machine learning algorithms in agriculture
收藏 引用
Test Engineering and Management 2020年 82卷 9312-9320页
作者: Jude Immaculate, H. Evanzalin Ebenanjar, P. Sivaranjani, K. Sebastian Terence, J. Department of Mathematics Karunya Institute of Technology and Science CoimbatoreTamil Nadu India
Machine learning(ML) makes machines independent and self-learning component. Researchers applying machine learning algorithms to solve various real word problems in various domains. Nowadays agriculture affects by var... 详细信息
来源: 评论
learning algorithms for audio signal enhancement .2. Implementation of the rough-set method for the removal of hiss
JOURNAL OF THE AUDIO ENGINEERING SOCIETY
收藏 引用
JOURNAL OF THE AUDIO ENGINEERING SOCIETY 1997年 第11期45卷 931-943页
作者: Czyzewski, A AES Poland Tech. University of Gdańsk Sound Engineering Department 80-952 Gdańsk Poland
learning algorithms were implemented for the elimination of strong hiss found in old records and of impulse noise affecting transmitted audio signals. The rough-set method was tested with regard to the automatic setti... 详细信息
来源: 评论
On-line learning algorithms for neural networks with IIR synapses
On-line learning algorithms for neural networks with IIR syn...
收藏 引用
1995 IEEE International Conference on Neural Networks (ICNN 95)
作者: Campolucci, P Piazza, F Uncini, A UNIV ANCONA DIPARTIMENTO ELETTRON & AUTOMAT I-60131 ANCONA ITALY
This paper is focused on the learning algorithms for dynamic multilayer perceptron neural networks where each neuron synapsis is modelled by an infinite impulse response (IIR) filter (IIR MLP). In particular, the Back... 详细信息
来源: 评论
Riemannian structure of some new gradient descent learning algorithms
Riemannian structure of some new gradient descent learning a...
收藏 引用
Symposium on Adaptive Systems for Signal Processing, Communications, and Control (AS-SPCC)
作者: Mahony, RE Williamson, RC Monash Univ Dept Elect & Comp Syst Engn Clayton Vic 3800 Australia
We consider some generalizations of the classical LMS learning algorithm including the Exponentiated Gradient (EG) algorithm. We show how one can develop these algorithms in terms of a prior distribution over the weig... 详细信息
来源: 评论
Lazy learning algorithms for problems with many binary features and classes  6th
收藏 引用
6th Ibero-American Congress on Artificial Intelligence (IBERAMIA 98)
作者: Winiwarter, W Univ Vienna Inst Appl Comp Sci & Informat Syst A-1010 Vienna Austria
We have designed several new lazy learning algorithms for learning problems with many binary features and classes. This particular type of learning task can be found in many machine learning applications but is of spe... 详细信息
来源: 评论
When Will Generative Adversarial Imitation learning algorithms Attain Global Convergence  24
When Will Generative Adversarial Imitation Learning Algorith...
收藏 引用
24th International Conference on Artificial Intelligence and Statistics (AISTATS)
作者: Guan, Ziwei Xu, Tengyu Liang, Yingbin Ohio State Univ Columbus OH 43210 USA
Generative adversarial imitation learning (GAIL) is a popular inverse reinforcement learning approach for jointly optimizing policy and reward from expert trajectories. A primary question about GAIL is whether applyin... 详细信息
来源: 评论
Statistical Indistinguishability of learning algorithms  40
Statistical Indistinguishability of Learning Algorithms
收藏 引用
40th International Conference on Machine learning
作者: Kalavasis, Alkis Karbasi, Amin Moran, Shay Velegkas, Grigoris NTUA Dept Comp Sci Athens Greece Yale Univ Dept Comp Sci New Haven CT 06520 USA Google Res Mountain View CA USA Technion Dept Comp Sci Haifa Israel
When two different parties use the same learning rule on their own data, how can we test whether the distributions of the two outcomes are similar? In this paper, we study the similarity of outcomes of learning rules ... 详细信息
来源: 评论
Generalization of Model-Agnostic Meta-learning algorithms: Recurring and Unseen Tasks  35
Generalization of Model-Agnostic Meta-Learning Algorithms: R...
收藏 引用
35th Annual Conference on Neural Information Processing Systems (NeurIPS)
作者: Fallah, Alireza Mokhtari, Aryan Ozdaglar, Asuman MIT Dept EECS Cambridge MA 02139 USA Univ Texas Austin ECE Dept Austin TX 78712 USA
In this paper, we study the generalization properties of Model-Agnostic Meta-learning (MAML) algorithms for supervised learning problems. We focus on the setting in which we train the MAML model over m tasks, each wit... 详细信息
来源: 评论
Evolving efficient learning algorithms for binary mappings
Evolving efficient learning algorithms for binary mappings
收藏 引用
INNS/IEEE International Joint Conference on Neural Networks (IJCNN 03)
作者: Bullinaria, JA Univ Birmingham Sch Comp Sci Birmingham B15 2TT W Midlands England
Gradient descent training of sigmoidal feed-forward neural networks on binary mappings often gets stuck with someout puts totally wrong. This is because a sum-squared-error cost function leads to weight updates that d... 详细信息
来源: 评论
Performance Comparison of learning algorithms for System Identification and Control  12
Performance Comparison of Learning Algorithms for System Ide...
收藏 引用
12 IEEE Int C Elect Energy Env Communications Computer Control
作者: Subramanian, Karpagavalli Krishnappa, Suresh G. George, Koshy PES Univ PES Ctr Intelligent Syst 100 Feet Ring RdBSK 3rd Stage Bangalore 560085 Karnataka India PES Univ Dept Telecommun Engn Bangalore 560085 Karnataka India
Modelling a dynamical system is a crucial step in the design of a control law. Corresponding to a dynamical system there is a set of models, and the designer chooses one of them. In the case of nonlinear dynamical sys... 详细信息
来源: 评论