咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 34 篇 计算机科学与技术...
    • 27 篇 电气工程
    • 10 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 石油与天然气工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 网络空间安全
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 3 篇 理学
    • 3 篇 数学
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 49 篇 learning to opti...
  • 11 篇 optimization
  • 7 篇 training
  • 5 篇 machine learning
  • 5 篇 deep reinforceme...
  • 4 篇 reinforcement le...
  • 4 篇 deep neural netw...
  • 4 篇 algorithm unroll...
  • 4 篇 attention mechan...
  • 3 篇 online algorithm
  • 3 篇 neural networks
  • 3 篇 resource managem...
  • 3 篇 generators
  • 3 篇 nonconvex optimi...
  • 3 篇 heuristic algori...
  • 2 篇 ensemble learnin...
  • 2 篇 approximation al...
  • 2 篇 optimal power fl...
  • 2 篇 deep learning
  • 2 篇 deep neural netw...

机构

  • 5 篇 zhejiang univ te...
  • 4 篇 univ texas austi...
  • 3 篇 xi an jiao tong ...
  • 3 篇 nanyang technol ...
  • 3 篇 nankai univ res ...
  • 3 篇 shenzhen res ins...
  • 3 篇 singapore manage...
  • 2 篇 hong kong univ s...
  • 2 篇 chinese univ hon...
  • 2 篇 peng cheng lab p...
  • 2 篇 tongji univ sch ...
  • 1 篇 argonne natl lab...
  • 1 篇 hkbu peoples r c...
  • 1 篇 univ calif river...
  • 1 篇 natl univ singap...
  • 1 篇 department of ma...
  • 1 篇 national center ...
  • 1 篇 hong kong polyte...
  • 1 篇 zhejiang univ co...
  • 1 篇 xiamen univ key ...

作者

  • 5 篇 xu bowen
  • 5 篇 zhang wen-an
  • 5 篇 guo fanghong
  • 4 篇 li meiyi
  • 3 篇 li yang
  • 3 篇 xu zongben
  • 3 篇 zhang haotian
  • 3 篇 wen changyun
  • 3 篇 ren shaolei
  • 3 篇 yang jianyi
  • 3 篇 li pengfei
  • 3 篇 yu li
  • 3 篇 xiao jianhua
  • 2 篇 wotao yin
  • 2 篇 kolouri soheil
  • 2 篇 shi qingjiang
  • 2 篇 jialin liu
  • 2 篇 sun jianyong
  • 2 篇 mohammadi javad
  • 2 篇 chang tsung-hui

语言

  • 48 篇 英文
  • 1 篇 其他
检索条件"主题词=learning to optimize"
49 条 记 录,以下是1-10 订阅
排序:
Low-Complexity CSI Feedback for FDD Massive MIMO Systems via learning to optimize
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2025年 第4期24卷 3483-3498页
作者: Ma, Yifan He, Hengtao Song, Shenghui Zhang, Jun Letaief, Khaled B. Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Zhejiang Wanli Univ Coll Informat & Intelligence Engn Ningbo 315100 Peoples R China
In frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) systems, the growing number of base station antennas leads to prohibitive feedback overhead for downlink channel state information (CSI)... 详细信息
来源: 评论
learning to optimize QoS-Constrained Beamforming in Multi-User Systems: A Penalty-Dual Framework
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2024年 第11期23卷 16123-16138页
作者: Li, Yang Liu, Ya-Feng Xu, Fan Shi, Qingjiang Chang, Tsung-Hui Shenzhen Res Inst Big Data Shenzhen 518172 Peoples R China Chinese Acad Sci Inst Computat Math & Sci Engn Comp Acad Math & Syst Sci State Key Lab Sci & Engn Comp Beijing 100190 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Tongji Univ Sch Software Engn Shanghai 200092 Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen 518172 Peoples R China
This paper investigates a novel deep learning framework for the general nonconvex quality-of-service (QoS)-constrained beamforming design problems in multi-user systems. While existing deep learning-based approaches h... 详细信息
来源: 评论
learning to optimize: A Primer and A Benchmark
收藏 引用
JOURNAL OF MACHINE learning RESEARCH 2022年 第1期23卷 1-59页
作者: Chen, Tianlong Chen, Xiaohan Chen, Wuyang Wang, Zhangyang Heaton, Howard Liu, Jialin Yin, Wotao Engn Univ Texas Austin Dept Elect & Comp Austin TX 78712 USA Typal LLC Typal Res Los Angeles CA 90064 USA Damo Acad Decis Intelligence Lab Alibaba US Bellevue WA 98004 USA
learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engi-neering. It automates the design of an optim... 详细信息
来源: 评论
learning to optimize:A tutorial for continuous and mixed-integer optimization
收藏 引用
Science China Mathematics 2024年 第6期67卷 1191-1262页
作者: Xiaohan Chen Jialin Liu Wotao Yin Decision Intelligence Lab Alibaba DAMO AcademyBellevueWA98004USA
learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization *** real-world optimization prob... 详细信息
来源: 评论
learning to optimize Distributed Optimization: ADMM-based DC-OPF Case Study
Learning to Optimize Distributed Optimization: ADMM-based DC...
收藏 引用
IEEE-Power-and-Energy-Society General Meeting (PESGM)
作者: Li, Meiyi Kolouri, Soheil Moharnmadil, Javad Univ Texas Austin Dept Civil Architectural & Environm Engn Austin TX 78712 USA Vanderbilt Univ Dept Comp Sci Nashville TN USA
The decision-making paradigms of future energy systems are increasingly becoming decentralized and multi-entity/agent. The Alternating Direction Method of Multipliers (ADMM) has been widely used to address the computa... 详细信息
来源: 评论
L2O-ILT: learning to optimize Inverse Lithography Techniques
收藏 引用
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2024年 第3期43卷 944-955页
作者: Zhu, Binwu Zheng, Su Yu, Ziyang Chen, Guojin Ma, Yuzhe Yang, Fan Yu, Bei Wong, Martin D. F. Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol Guangzhou Microelect Thrust Guangzhou 511453 Peoples R China Fudan Univ Microelect Dept State Key Lab AS & Syst Shanghai 200437 Peoples R China
Inverse lithography technique (ILT) is one of the most widely used resolution enhancement techniques (RETs) to compensate for the diffraction effect in the lithography process. However, ILT suffers from runtime overhe... 详细信息
来源: 评论
Towards Robust learning to optimize with Theoretical Guarantees
Towards Robust Learning to Optimize with Theoretical Guarant...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Song, Qingyu Lin, Wei Wang, Juncheng Xu, Hong CUHK Hong Kong Peoples R China HKBU Hong Kong Peoples R China
learning to optimize (L2O) is an emerging technique to solve mathematical optimization problems with learning-based methods. Although with great success in many real-world scenarios such as wireless communications, co... 详细信息
来源: 评论
learning to optimize: a primer and a benchmark
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine learning Research 2022年 第1期23卷 8562-8620页
作者: Tianlong Chen Xiaohan Chen Wuyang Chen Zhangyang Wang Howard Heaton Jialin Liu Wotao Yin Department of Electrical and Computer and Engineering The University of Texas at Austin Austin TX Typal Research Typal LLC Los Angeles CA Alibaba US Damo Academy Decision Intelligence Lab Bellevue WA
learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimi... 详细信息
来源: 评论
EDformer family: End-to-end multi-task load forecasting frameworks for day-ahead economic dispatch☆
收藏 引用
APPLIED ENERGY 2025年 383卷
作者: Tian, Zhirui Liu, Weican Zhang, Jiahao Sun, Wenpu Wu, Chenye Chinese Univ Hong Kong Sch Sci & Engn Shenzhen Guangdong Peoples R China
The highly penetrated renewable energy resources have significantly increased the uncertainty faced by the power system. Accurate day-ahead economic dispatch (ED) is crucial for managing this uncertainty and ensuring ... 详细信息
来源: 评论
Multi-objective optimization-assisted single-objective differential evolution by reinforcement learning
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 94卷
作者: Zhang, Haotian Guan, Xiaohong Wang, Yixin Nan, Nan Xi An Jiao Tong Univ Frontier Inst Sci & Technol Ctr Art & Sci & Presentat & Commun Xian 710049 Peoples R China Xi An Jiao Tong Univ Fac Elect & Informat Engn MOE KLINNS Lab Xian 710049 Peoples R China Tsinghua Univ Ctr Intelligent & Networked Syst Dept Automat Beijing 100084 Peoples R China
"learning to optimize"design systems for evolutionary algorithm (EA) automatic design have become a trend, especially for differential evolution (DE). "learning to optimize"design systems for EAs h... 详细信息
来源: 评论