咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 11 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 电子科学与技术(可...
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
  • 10 篇 医学
    • 10 篇 临床医学
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 地球物理学

主题

  • 18 篇 learning-based i...
  • 3 篇 image coding
  • 2 篇 object detection
  • 2 篇 deep learning
  • 2 篇 convolution
  • 2 篇 image classifica...
  • 2 篇 image reconstruc...
  • 2 篇 augmented normal...
  • 1 篇 perceptually los...
  • 1 篇 device interoper...
  • 1 篇 transformer
  • 1 篇 high-density rad...
  • 1 篇 loss function
  • 1 篇 percepual pptimi...
  • 1 篇 rate distortion ...
  • 1 篇 image quality me...
  • 1 篇 variational auto...
  • 1 篇 image quality as...
  • 1 篇 variable rate im...
  • 1 篇 mars

机构

  • 2 篇 ecole polytech f...
  • 1 篇 xi an jiao tong ...
  • 1 篇 inst super tecn ...
  • 1 篇 poznan univ tech...
  • 1 篇 xi an jiao tong ...
  • 1 篇 univ tun hussein...
  • 1 篇 natl yang ming c...
  • 1 篇 univ manouba nat...
  • 1 篇 inst telecomunic...
  • 1 篇 indian inst tech...
  • 1 篇 univ brasilia de...
  • 1 篇 friedrich alexan...
  • 1 篇 univ brasilia fa...
  • 1 篇 xi an jiao tong ...
  • 1 篇 google llc mount...
  • 1 篇 beijing inst spa...
  • 1 篇 beihang univ dep...
  • 1 篇 apollo gleneagle...
  • 1 篇 zhejiang prov ke...
  • 1 篇 univ sci & techn...

作者

  • 3 篇 ebrahimi touradj
  • 2 篇 han jingning
  • 2 篇 liang jie
  • 2 篇 ascenso joao
  • 2 篇 upenik evgeniy
  • 2 篇 zhang guohe
  • 2 篇 testolina michel...
  • 2 篇 kaup andre
  • 2 篇 fu haisheng
  • 2 篇 liang feng
  • 1 篇 karam lina j.
  • 1 篇 zou xin
  • 1 篇 li li
  • 1 篇 raj aditya
  • 1 篇 koyuncu esin
  • 1 篇 sarkar tandra
  • 1 篇 macchiavello bru...
  • 1 篇 jiang lai
  • 1 篇 li fan
  • 1 篇 windsheimer marc

语言

  • 18 篇 英文
检索条件"主题词=learning-based image compression"
18 条 记 录,以下是1-10 订阅
排序:
learning-based image compression With Parameter-Adaptive Rate-Constrained Loss
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 1099-1103页
作者: Guerin Jr, Nilson D. da Silva, Renam Castro Macchiavello, Bruno Univ Brasilia Dept Comp Sci BR-70910900 Brasilia Brazil Univ Brasilia Fac UnB Gama BR-72444240 Gama Leste Brazil
In recent years, the crucial task of image compression has been addressed by end-to-end neural network methods. However, achieving fine-grained rate control in this new paradigm has presented challenges. In our previo... 详细信息
来源: 评论
Semantic-oriented learning-based image compression by Only-Train-Once quantized autoencoders
收藏 引用
SIGNAL image AND VIDEO PROCESSING 2023年 第1期17卷 285-293页
作者: Sebai, D. Shah, A. Ulah Univ Manouba Natl Sch Comp Sci Cristal Lab Manouba Tunisia Univ Tun Hussein Onn Fac Comp Sci & Informat Technol Parit Raja Johor Malaysia
Accessibility to big training datasets together with current advances in computing power has emerged interest in the leverage of deep learning to address image compression. This needs to train and deploy separate netw... 详细信息
来源: 评论
FOURIER SERIES AND LAPLACIAN NOISE-based QUANTIZATION ERROR COMPENSATION FOR END-TO-END learning-based image compression  30
FOURIER SERIES AND LAPLACIAN NOISE-BASED QUANTIZATION ERROR ...
收藏 引用
30th IEEE International Conference on image Processing (ICIP)
作者: Jiang, Shiqi Yuan, Hui Li, Shuai Mao, Xiaolong Shandong Univ Sch Software Jinan Shandong Peoples R China Shandong Univ Sch Control Sci & Engn Jinan Shandong Peoples R China
Quantization is a core operation in lossy image compression. In the end-to-end learning-based image compression framework, quantization is conducted by a rounding operation during test, while it is replaced by additiv... 详细信息
来源: 评论
On the impact of learning-based image compression on computer vision tasks  47
On the impact of learning-based image compression on compute...
收藏 引用
Conference on Applications of Digital image Processing XLVII
作者: Akamatsu, Shunsuke Testolina, Michela Upenik, Evgeniy Ebrahimi, Touradj Waseda Univ Adv Multimedia Syst Lab Shillman Hall 4013-14-9 OkuboShinjuku Ku Tokyo 1690072 Japan Ecole Polytech Fed Lausanne EPFL Multimedia Signal Proc Grp MMSPG CH-1015 Lausanne Switzerland
The image compression field is witnessing a shift in paradigm thanks to the rise of neural network-based models. In this context, the JPEG committee is in the process of standardizing the first learning-based image co... 详细信息
来源: 评论
Asymmetric Learned image compression With Multi-Scale Residual Block, Importance Scaling, and Post-Quantization Filtering
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第8期33卷 4309-4321页
作者: Fu, Haisheng Liang, Feng Liang, Jie Li, Binglin Zhang, Guohe Han, Jingning Xi An Jiao Tong Univ Sch Microelect Xian 710049 Peoples R China Simon Fraser Univ Sch Engn Sci Burnaby BC V5A 1S6 Canada Google Inc Mountain View CA 95054 USA
Recently, deep learning-based image compression has made significant progresses, and has achieved better rate-distortion (R-D) performance than the latest traditional method, H.266/VVC, in both MS-SSIM metric and the ... 详细信息
来源: 评论
ANFIC: image compression Using Augmented Normalizing Flows
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS
收藏 引用
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2021年 2卷 613-626页
作者: Ho, Yung-Han Chan, Chih-Chun Peng, Wen-Hsiao Hang, Hsueh-Ming Domanski, Marek Natl Yang Ming Chiao Tung Univ Dept Comp Sci Hsinchu 300 Taiwan Natl Yang Ming Chiao Tung Univ Dept Elect Engn Hsinchu 300 Taiwan Poznan Univ Tech Inst Multimedia Telecommun PL-60965 Poznan Poland
This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows (ANF). ANF is a new type of flow model, which stacks multiple variational autoencoders (VAE) for... 详细信息
来源: 评论
Device Interoperability for Learned image compression with Weights and Activations Quantization
Device Interoperability for Learned Image Compression with W...
收藏 引用
Picture Coding Symposium (PCS)
作者: Koyuncu, Esin Solovyev, Timofey Alshina, Elena Kaup, Andre Friedrich Alexander Univ Erlangen Nurnberg Multimedia Commun & Signal Proc Erlangen Germany Huawei Technol Audiovisual Lab Munich Res Ctr Munich Germany
learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device intero... 详细信息
来源: 评论
A new end-to-end image compression system based on convolutional neural networks  42
A new end-to-end image compression system based on convoluti...
收藏 引用
Conference on Applications of Digital image Processing XLII
作者: Akyazi, Pinar Ebrahimi, Touradj Ecole Polytech Fed Lausanne Multimedia Signal Proc Grp MMSPG CH-1015 Lausanne Switzerland
In this paper, two new end-to-end image compression architectures based on convolutional neural networks are presented. The proposed networks employ 2D wavelet decomposition as a preprocessing step before training and... 详细信息
来源: 评论
EFFICIENT LEARNED image compression WITH SELECTIVE KERNEL RESIDUAL MODULE AND CHANNEL-WISE CAUSAL CONTEXT MODEL  49
EFFICIENT LEARNED IMAGE COMPRESSION WITH SELECTIVE KERNEL RE...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Fu, Haisheng Liang, Feng Liang, Jie Fang, Zhenman Zhang, Guohe Han, Jingning Xi An Jiao Tong Univ Xian Peoples R China Simon Fraser Univ Burnaby BC Canada Google LLC Mountain View CA USA
Recently, learning-based image compression approaches have achieved superior performance over classical image compression methods. However, their complexities remain quite high. In this paper, we propose two efficient... 详细信息
来源: 评论
MULTISCALE AUGMENTED NORMALIZING FLOWS FOR image compression  49
MULTISCALE AUGMENTED NORMALIZING FLOWS FOR IMAGE COMPRESSION
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Windsheimer, Marc Brand, Fabian Kaup, Andre Friedrich Alexander Univ Erlangen Nurnberg Multimedia Commun & Signal Proc Cauerstr 7 D-91058 Erlangen Germany
Most learning-based image compression methods lack efficiency for high image quality due to their non-invertible design. The decoding function of the frequently applied compressive autoencoder architecture is only an ... 详细信息
来源: 评论