咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 交通运输工程

主题

  • 1 篇 object detection
  • 1 篇 road vehicles
  • 1 篇 optical, image a...
  • 1 篇 lane detection p...
  • 1 篇 lightweight lane...
  • 1 篇 slow speed
  • 1 篇 computer vision ...
  • 1 篇 modern lane line...
  • 1 篇 neural nets
  • 1 篇 image segmentati...
  • 1 篇 learnable cluste...
  • 1 篇 deep learning (a...
  • 1 篇 limited receptiv...
  • 1 篇 row segmentation
  • 1 篇 feature extracti...
  • 1 篇 commonly used de...
  • 1 篇 pattern clusteri...
  • 1 篇 self-attention m...
  • 1 篇 extremely fast s...
  • 1 篇 lane line points

机构

  • 1 篇 autocore ai peop...
  • 1 篇 xijing univ sch ...

作者

  • 1 篇 ma yahong
  • 1 篇 li linsen
  • 1 篇 huang zhentao
  • 1 篇 yang qin
  • 1 篇 tao jiaxin
  • 1 篇 gao yujie
  • 1 篇 su chang
  • 1 篇 jiang rui

语言

  • 1 篇 英文
检索条件"主题词=lightweight lane line detection algorithm"
1 条 记 录,以下是1-10 订阅
排序:
lightweight lane line detection based on learnable cluster segmentation with self-attention mechanism
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2023年 第3期17卷 518-529页
作者: Yang, Qin Ma, Yahong Li, Linsen Su, Chang Gao, Yujie Tao, Jiaxin Huang, Zhentao Jiang, Rui Xijing Univ Sch Informat Engn Xian Peoples R China Autocore Ai Nanjing Peoples R China
Pixel segmentation is one of the most commonly used deep learning methods for modern lane line detection. Although deep segmentation outperforms traditional methods, there are two main problems: slow speed and limited... 详细信息
来源: 评论