Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro-and micropatterns of facial expressi...
详细信息
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro-and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the localbinarypattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively. (C) 2017 SPIE and IS&T
Breast cancer is a cancerous tumor that arrives within the tissues of the breast. Women are mostly attacked than men. To detect early cancer medical specialists, suggest mammography for screening. Algorithms in Machin...
详细信息
Breast cancer is a cancerous tumor that arrives within the tissues of the breast. Women are mostly attacked than men. To detect early cancer medical specialists, suggest mammography for screening. Algorithms in Machine learning were executed on mammogram images to classify whether the tissues are deleterious or not. An analysis is done based on the texture feature extraction using different techniques like Frequency decoded localbinarypattern (FDLBP), local Bit-plane Decoded pattern (LBDP), local Diagonal Extrema pattern (LDEP), local Directional Order pattern (LDOP), local Wavelet pattern (LWP). The features extracted are tested on 322 images from MIA's database of three different classes. The algorithms in Machine learning like K-Nearest Neighbor classifier (KNN), Support vector classifier (SVC), Decision Tree classifier (DTC), Random Forest classifier (RFC), AdaBoost classifier (AC), Gradient Boosting classifier (GBC), Gaussian Naive Bayes classifier (GNB), Linear Discriminant Analysis classifier (LDA), Quadratic Discriminant Analysis classifier (QDA) were used to evaluate the accuracy of classification. This paper examines the comparison of accuracy using different texture features. KNN algorithm with LDEP for texture feature extraction gives classification accuracy of 64.61%, SVC with all the texture patterns mentioned gives classification accuracy of 63.07%, DTC with FDLBP, LBDP gives classification accuracy of 47.69, RFC with LBDP and AC with LDOP and GBC with FDLBP gives 61.53% classification accuracy, GNB and LDA with FDLBP gives 60% and 63.07% classification accuracy respectively, QDA with LBDP gives 64.61 classification accuracy. Of all the Algorithms support vector classifier gives good accuracy results with all the texture patterns mentioned.
暂无评论