咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 local search alg...
  • 1 篇 optimization
  • 1 篇 transfer functio...
  • 1 篇 benchmark testin...
  • 1 篇 feature extracti...
  • 1 篇 classification a...
  • 1 篇 feature selectio...
  • 1 篇 butterfly optimi...
  • 1 篇 machine learning...
  • 1 篇 heuristic algori...

机构

  • 1 篇 xiamen univ mala...
  • 1 篇 asia pacific uni...
  • 1 篇 univ calif san d...
  • 1 篇 torrens univ aus...
  • 1 篇 univ lahore dept...

作者

  • 1 篇 al-garadi mohamm...
  • 1 篇 rana toqir a.
  • 1 篇 mirjalili seyeda...
  • 1 篇 alrashdan ma'en ...
  • 1 篇 tubishat mohamma...
  • 1 篇 alswaitti mohamm...

语言

  • 1 篇 英文
检索条件"主题词=local search algorithm based on mutation"
1 条 记 录,以下是1-10 订阅
排序:
Dynamic Butterfly Optimization algorithm for Feature Selection
收藏 引用
IEEE ACCESS 2020年 8卷 194303-194314页
作者: Tubishat, Mohammad Alswaitti, Mohammed Mirjalili, Seyedali Al-Garadi, Mohammed Ali Alrashdan, Ma'en Tayseer Rana, Toqir A. Asia Pacific Univ Technol & Innovat Sch Technol & Comp Kuala Lumpur 57000 Malaysia Xiamen Univ Malaysia Sch Elect & Comp Engn ICT Bandar Sunsuria 43900 Malaysia Torrens Univ Australia Ctr Artificial Intelligence Res & Optimizat Fortitude Valley Qld 4006 Australia Univ Calif San Diego Dept Radiol La Jolla CA 92093 USA Univ Lahore Dept Comp Sci & IT Lahore 54590 Pakistan
Feature selection represents an essential pre-processing step for a wide range of Machine Learning approaches. Datasets typically contain irrelevant features that may negatively affect the classifier performance. A fe... 详细信息
来源: 评论