咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 5 篇 电气工程
    • 4 篇 计算机科学与技术...
    • 3 篇 信息与通信工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 2 篇 石油与天然气工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 理学
    • 1 篇 化学
    • 1 篇 生物学

主题

  • 12 篇 long short-term ...
  • 3 篇 anomaly detectio...
  • 2 篇 extreme gradient...
  • 1 篇 support vector r...
  • 1 篇 mahalanobis dist...
  • 1 篇 fault prediction
  • 1 篇 multivariate tim...
  • 1 篇 outliers
  • 1 篇 dae
  • 1 篇 gated recurrent ...
  • 1 篇 load aggregator
  • 1 篇 wind turbine
  • 1 篇 deep learning
  • 1 篇 electricity cons...
  • 1 篇 mean absolute er...
  • 1 篇 ann
  • 1 篇 ambient assisted...
  • 1 篇 long short-term ...
  • 1 篇 environmental se...
  • 1 篇 fuzzy c-means cl...

机构

  • 1 篇 univ sao paulo i...
  • 1 篇 univ montreal de...
  • 1 篇 china railway en...
  • 1 篇 univ brasilia el...
  • 1 篇 southwest jiaoto...
  • 1 篇 southwest jiaoto...
  • 1 篇 oklahoma state u...
  • 1 篇 univ brasilia co...
  • 1 篇 argonne natl lab...
  • 1 篇 cent china norma...
  • 1 篇 jeonbuk natl uni...
  • 1 篇 power systems an...
  • 1 篇 natl res council...
  • 1 篇 beijing univ che...
  • 1 篇 soongsil univ de...
  • 1 篇 univ montreal de...
  • 1 篇 univ quebec mont...
  • 1 篇 southwest jiaoto...
  • 1 篇 soongsil univ de...
  • 1 篇 amazon web serv ...

作者

  • 1 篇 tang hengtao
  • 1 篇 ryu han seok
  • 1 篇 de sousa jr rafa...
  • 1 篇 rama v. siva bra...
  • 1 篇 akins alexandra
  • 1 篇 seo youngsuk
  • 1 篇 liu mengfan
  • 1 篇 cho jaehyuk
  • 1 篇 li zhixuan
  • 1 篇 pividal marcel
  • 1 篇 heifetz alexande...
  • 1 篇 molina andre l. ...
  • 1 篇 kultgen derek
  • 1 篇 moon yeeun
  • 1 篇 ma fangyuan
  • 1 篇 goncalves vinici...
  • 1 篇 sun wei
  • 1 篇 aude dufresne
  • 1 篇 kim mun kyeom
  • 1 篇 tang xun

语言

  • 12 篇 英文
检索条件"主题词=long short-term memory autoencoder"
12 条 记 录,以下是1-10 订阅
排序:
long short-term memory autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting
收藏 引用
ENERGIES 2024年 第15期17卷 3666-3666页
作者: Moon, Yeeun Lee, Younjeong Hwang, Yejin Jeong, Jongpil Sungkyunkwan Univ Dept Smart Factory Convergence 2066 Seobu Ro Suwon 16419 South Korea Sungkyunkwan Univ Dept Biomechatron Engn 2066 Seobu Ro Suwon 16419 South Korea
Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity... 详细信息
来源: 评论
Wear anomaly detection method of tunnel boring machine disc cutters based on anomaly-attention improved long short-term memory autoencoder
收藏 引用
MEASUREMENT 2025年 253卷
作者: Zhang, Kai Wang, Junren Zheng, Qing Ding, Guofu Li, Zhixuan Zhang, Zhonghua Southwest Jiaotong Univ Sch Mech Engn Chengdu 610031 Peoples R China Southwest Jiaotong Univ State Key Lab Rail Transit Vehicle Syst Chengdu 610031 Peoples R China Southwest Jiaotong Univ Technol & Equipment Rail Transit Operat & Maintena Chengdu 610031 Peoples R China China Railway Engn Serv Co Ltd Chengdu Peoples R China
Wear anomaly detection method of tunnel boring machine disc cutters based on anomaly-attention improved long short-term memory autoencoder
来源: 评论
MOLA: Enhancing Industrial Process Monitoring Using a Multi-Block Orthogonal long short-term memory autoencoder
收藏 引用
PROCESSES 2024年 第12期12卷 2824-2824页
作者: Ma, Fangyuan Ji, Cheng Wang, Jingde Sun, Wei Tang, Xun Jiang, Zheyu Oklahoma State Univ Sch Chem Engn 420 Engn North Stillwater OK 74078 USA Beijing Univ Chem Technol Coll Chem Engn Beijing 100029 Peoples R China Louisiana State Univ Cain Dept Chem Engn Baton Rouge LA 70803 USA
In this work, we introduce MOLA, a multi-block orthogonal long short-term memory autoencoder paradigm, to conduct accurate, reliable fault detection of industrial processes. To achieve this, MOLA effectively extracts ... 详细信息
来源: 评论
Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using long short-term memory autoencoder
收藏 引用
ENERGIES 2023年 第13期16卷 4965页
作者: Akins, Alexandra Kultgen, Derek Heifetz, Alexander Argonne Natl Lab Nucl Sci & Engn Div Lemont IL 60439 USA North Carolina State Univ Dept Nucl Engn Raleigh NC 27006 USA
Sodium-cooled fast reactors (SFR), which use high temperature fluid near ambient pressure as coolant, are one of the most promising types of GEN IV reactors. One of the unique challenges of SFR operation is purificati... 详细信息
来源: 评论
short-term Fault Prediction of Wind Turbines Based on Integrated RNN-LSTM
收藏 引用
IEEE ACCESS 2024年 12卷 22465-22478页
作者: Rama, V. Siva Brahmaiah Hur, Sung-Ho Yang, Jung-Min Kyungpook Natl Univ Sch Elect & Elect Engn Daegu 41566 South Korea
This paper presents a data-driven approach to short-term wind turbine fault prediction and condition monitoring based on a hybrid architecture of recurrent neural network and long short-term memory. The proposed archi... 详细信息
来源: 评论
Unsupervised outlier detection for time-series data of indoor air quality using LSTM autoencoder with ensemble method
收藏 引用
JOURNAL OF BIG DATA 2023年 第1期10卷 66页
作者: Park, Junhyeok Seo, Youngsuk Cho, Jaehyuk Soongsil Univ Dept Elect & Informat Engn Seoul South Korea Soongsil Univ Dept Math Seoul South Korea Jeonbuk Natl Univ Dept Software Engn Jeonju Si Jeollabuk Do South Korea
The proposed framework consists of three modules as an outlier detection method for indoor air quality data. We first use a long short-term memory autoencoder (LSTM-AE) based reconstruction error detector, which desig... 详细信息
来源: 评论
Two-Level Optimal Bidding Strategy for Load Aggregator Based on a Data-Driven Approach Combined With LSTM-Based Forecasting and Agent-Based Models
收藏 引用
IEEE ACCESS 2023年 11卷 89249-89264页
作者: Ryu, Han Seok Kim, Hyung Joon Kim, Mun Kyeom Chung Ang Univ Dept Energy Syst Engn Seoul 06974 South Korea
Demand response (DR) is an economical way of addressing the challenges faced by the massive penetration of distributed energy resources, such as renewable energy. Residential consumers account for a significant propor... 详细信息
来源: 评论
Integrating Abnormal Gait Detection with Activities of Daily Living Monitoring in Ambient Assisted Living: A 3D Vision Approach
收藏 引用
SENSORS 2024年 第1期24卷 82页
作者: Diraco, Giovanni Manni, Andrea Leone, Alessandro Natl Res Council Italy Inst Microelect & Microsyst P Lecce Monteroni km 1-200 I-73100 Lecce Italy
Gait analysis plays a crucial role in detecting and monitoring various neurological and musculoskeletal disorders early. This paper presents a comprehensive study of the automatic detection of abnormal gait using 3D v... 详细信息
来源: 评论
Analyzing and Interpreting Students' Self-regulated Learning Patterns Combining Time-series Feature Extraction, Segmentation, and Clustering
收藏 引用
JOURNAL OF EDUCATIONAL COMPUTING RESEARCH 2022年 第5期60卷 1130-1165页
作者: Zhang, Mingyan Du, Xu Hung, Jui-long Li, Hao Liu, Mengfan Tang, Hengtao Zhejiang Normal Univ Coll Teacher Educ Jinhua Zhejiang Peoples R China Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan Peoples R China Boise State Univ Dept Educ Technol 1910 Univ Dr Boise ID 83725 USA Cent China Normal Univ Natl Engn Lab Educ Big Data Wuhan 430079 Peoples R China Univ South Carolina Dept Educ Studies Columbia SC USA
In online learning, students' learning behavior might change as the course progresses. How students adjust learning behaviors aligned with course requirements reflects their self-regulated learning strategies. Ana... 详细信息
来源: 评论
A Lightweight Unsupervised Learning Architecture to Enhance User Behavior Anomaly Detection  14
A Lightweight Unsupervised Learning Architecture to Enhance ...
收藏 引用
IEEE Latin-American Conference on Communications (LATINCOM)
作者: Molina, Andre L. B. Goncalves, Vinicius P. de Sousa Jr, Rafael T. Pividal, Marcel Meneguette, Rodolfo, I Rocha Filho, Geraldo P. Univ Brasilia Elect Engn Dept Brasilia DF Brazil Amazon Web Serv World Wide Specialist Org AI ML Miami FL USA Univ Sao Paulo Inst Math & Comp Sci Sao Carlos Brazil Univ Brasilia Comp Sci Dept Brasilia DF Brazil
In recent years, user behavior anomaly detection has been gaining attention in cybersecurity. A crucial challenge that has been discussed in the literature is that supervised models that use vast amounts of data for t... 详细信息
来源: 评论