This study describes a key element of any modern wirelesssensorsystem: data processing. The authors describe a system consisting of a wirelesssensor network and an algorithmic software for condition-based monitorin...
详细信息
This study describes a key element of any modern wirelesssensorsystem: data processing. The authors describe a system consisting of a wirelesssensor network and an algorithmic software for condition-based monitoring of electrical plant in a live substation. Specifically, the aim is to monitor for the presence of partial discharge (PD) using a matrix of inexpensive radio sensors with limited processing capability. A low-complexity fingerprinting technique is proposed, given that the sensor nodes to be deployed will be highly constrained in terms of processing power, memory and battery life. Two variants of artificial neural network (ANN) learning models (multilayer perceptron and generalised regression neural network) that use regression as a form of function approximation are developed and their performance compared to K-nearest neighbour and weighted K-nearest neighbour models. The results indicate that the ANN models yield superior performance in terms of robustness against noise and may be particularly suited for PD localisation.
暂无评论