咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 6 篇 电气工程
    • 6 篇 计算机科学与技术...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程

主题

  • 7 篇 low-rank coding
  • 2 篇 transfer learnin...
  • 2 篇 network data
  • 2 篇 image classifica...
  • 2 篇 encoding
  • 1 篇 tensor singular ...
  • 1 篇 tensor completio...
  • 1 篇 data privacy
  • 1 篇 deep learning
  • 1 篇 fast
  • 1 篇 multi-view learn...
  • 1 篇 structural patte...
  • 1 篇 telecommunicatio...
  • 1 篇 data clustering
  • 1 篇 dictionaries
  • 1 篇 privacy preservi...
  • 1 篇 convolutional co...
  • 1 篇 electron tubes
  • 1 篇 social network s...
  • 1 篇 tensors

机构

  • 2 篇 sichuan univ ins...
  • 2 篇 chongqing univ p...
  • 2 篇 chengdu univ inf...
  • 2 篇 chongqing univ p...
  • 1 篇 northeastern uni...
  • 1 篇 southwestern uni...
  • 1 篇 univ hong kong d...
  • 1 篇 univ elect sci &...
  • 1 篇 northeastern uni...
  • 1 篇 elect state co p...
  • 1 篇 chongqing univ p...
  • 1 篇 chongqing univ s...
  • 1 篇 rutgers univ new...
  • 1 篇 chongqing univ p...
  • 1 篇 chengdu univ inf...
  • 1 篇 shenzhen univ co...
  • 1 篇 indiana univ pur...
  • 1 篇 northeastern uni...

作者

  • 2 篇 wu tao
  • 2 篇 wang wei
  • 2 篇 fu yun
  • 2 篇 xian xingping
  • 2 篇 liu yanbing
  • 2 篇 qiao shaojie
  • 1 篇 li sheng
  • 1 篇 han nan
  • 1 篇 ng michael k.
  • 1 篇 wang kai
  • 1 篇 zhao xi-le
  • 1 篇 patel vishal m.
  • 1 篇 liu zhihong
  • 1 篇 wang fen
  • 1 篇 wang xi-zhao
  • 1 篇 ding zhengming
  • 1 篇 jiang tai-xiang
  • 1 篇 fan min
  • 1 篇 li kang
  • 1 篇 zhang hao

语言

  • 7 篇 英文
检索条件"主题词=low-rank coding"
7 条 记 录,以下是1-10 订阅
排序:
Convolutional Sparse and low-rank coding-Based Image Decomposition
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2018年 第5期27卷 2121-2133页
作者: Zhang, He Patel, Vishal M. Rutgers Univ New Brunswick Dept Elect & Comp Engn New Brunswick NJ 08901 USA
We propose novel convolutional sparse and low-rank coding-based methods for cartoon and texture decomposition. In our method, we first learn a set of generic filters that can efficiently represent cartoon-and texture-... 详细信息
来源: 评论
Dictionary Learning With low-rank coding Coefficients for Tensor Completion
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023年 第2期34卷 932-946页
作者: Jiang, Tai-Xiang Zhao, Xi-Le Zhang, Hao Ng, Michael K. Southwestern Univ Finance & Econ Sch Econ Informat Engn FinTech Innovat Ctr Chengdu 611130 Sichuan Peoples R China Univ Elect Sci & Technol China Sch Math Sci Res Ctr Image & Vis Comp Chengdu 611731 Peoples R China Univ Hong Kong Dept Math Pokfulam Hong Kong Peoples R China
In this article, we propose a novel tensor learning and coding model for third-order data completion. The aim of our model is to learn a data-adaptive dictionary from given observations and determine the coding coeffi... 详细信息
来源: 评论
Multi-View low-rank coding-Based Network Data De-Anonymization
收藏 引用
IEEE ACCESS 2020年 8卷 94575-94593页
作者: Xian, Xingping Wu, Tao Qiao, Shaojie Wang, Wei Liu, Yanbing Han, Nan Chongqing Univ Posts & Telecommun Dept Comp Sci & Technol Chongqing 400065 Peoples R China Chongqing Univ Posts & Telecommun Sch Cyber Secur & Informat Law Chongqing 400065 Peoples R China Chengdu Univ Informat Technol Sch Software Engn Chengdu 610225 Peoples R China Sichuan Univ Inst Cybersecur Chengdu 610065 Peoples R China Chongqing Univ Posts & Telecommun Chongqing Engn Lab Internet & Informat Secur Chongqing 400065 Peoples R China Chengdu Univ Informat Technol Sch Management Chengdu 610103 Peoples R China
Social networks are extensively exploited by third-party consumers such as researchers and advertisers to understand user characteristics and behaviors. In general, before network data is published, sensitive relation... 详细信息
来源: 评论
Self-Taught low-rank coding for Visual Learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018年 第3期29卷 645-656页
作者: Li, Sheng Li, Kang Fu, Yun Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA Northeastern Univ Coll Comp & Informat Sci Dept Elect & Comp Engn Boston MA 02115 USA
The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing ... 详细信息
来源: 评论
Deep Transfer low-rank coding for Cross-Domain Learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019年 第6期30卷 1768-1779页
作者: Ding, Zhengming Fu, Yun Indiana Univ Purdue Univ Indianapolis Dept Comp Informat & Technol Indianapolis IN 46202 USA Northeastern Univ Dept Elect & Comp Engn Coll Comp & Informat Sci Boston MA 02115 USA
Transfer learning has attracted great attention to facilitate the sparsely labeled or unlabeled target learning by leveraging previously well-established source domain through knowledge transfer. Recent activities on ... 详细信息
来源: 评论
Fast Locality-constrained low-rank coding for Image Classification
Fast Locality-constrained Low-rank Coding for Image Classifi...
收藏 引用
Chinese Automation Congress (CAC)
作者: Fan Min Wang Fen Wang Kai Shi Xin Liu Zhihong Chongqing Univ Sch Automat Chongqing 400044 Peoples R China Elect State Co Chongqing 400044 Peoples R China
In this paper, we propose a Fast Locality-constrained low-rank sparse coding for image classification. The low-rank coding seeks the homogeneousness and correlation of local features, encodes jointly and globally, bas... 详细信息
来源: 评论
NetSRE: Link predictability measuring and regulating
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2020年 196卷 105800-105800页
作者: Xian, Xingping Wu, Tao Qiao, Shaojie Wang, Xi-Zhao Wang, Wei Liu, Yanbing Chongqing Univ Posts & Telecommun Dept Comp Sci & Technol Chongqing Peoples R China Chongqing Univ Posts & Telecommun Sch Cybersecur & Informat Law Chongqing Peoples R China Chengdu Univ Informat Technol Sch Software Engn Chengdu Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China Sichuan Univ Inst Cybersecur Chengdu Peoples R China Chongqing Univ Posts & Telecommun Chongqing Engn Lab Internet & Informat Secur Chongqing Peoples R China
Link prediction is an elemental issue for network-structured data mining, which has already found a wide range of applications. The organization of real-world networks usually embodies both regularities and irregulari... 详细信息
来源: 评论