Coronavirus COVID-19 has been spreading like wildfire all over the world since the year 2019. Nowadays, everyone is interacting with social media on a regular basis. In this study, the primary objective is to examine ...
详细信息
In the twenty years from first grade to a PhD, students never learn any subject by the methods for which machine-learning algorithms have been designed. Those algorithms are useful for analyzing large volumes of data....
详细信息
ISBN:
(纸本)9788360810668
In the twenty years from first grade to a PhD, students never learn any subject by the methods for which machine-learning algorithms have been designed. Those algorithms are useful for analyzing large volumes of data. But they don't enable a computer system to learn a language as quickly and accurately as a three-year-old child. They're not even as effective as a mother raccoon teaching her babies how to find the best garbage cans. For all animals, learning is integrated with the cognitive cycle from perception to purposeful action. Many algorithms are needed to support that cycle. But an intelligent system must be more than a collection of algorithms. It must integrate them in a cognitive cycle of perception, learning, reasoning, and action. That cycle is key to designing intelligent systems.
Many shopping sites provide functions to submit a user review for a purchased item. Reviews of items including stories such as novels and movies sometimes contain spoilers (undesired and revealing plot descriptions) a...
详细信息
ISBN:
(纸本)9781479941438
Many shopping sites provide functions to submit a user review for a purchased item. Reviews of items including stories such as novels and movies sometimes contain spoilers (undesired and revealing plot descriptions) along with the opinions of the review author. In this paper, we propose a system that helps users see reviews without seeing such plot descriptions. This system classifies each sentence in a user review as plot-related or non-plot-related and hides plot descriptions from user reviews. We tested five common machine-learning algorithms to ascertain the appropriate algorithm to address this problem. We also proposed a method of generalizing people's names, which we think is strongly related to the plot description. We verified its contribution to the classification results. Finally, we implemented a display interface of user reviews in which users can control the level of plot hiding.
This study aimed to develop models assessing 26 machine-learning algorithms in regression analysis to predict the properties of terminal blend crumb rubber-modified bitumen (TB-CRMB) made with crosslinking additives. ...
详细信息
This study aimed to develop models assessing 26 machine-learning algorithms in regression analysis to predict the properties of terminal blend crumb rubber-modified bitumen (TB-CRMB) made with crosslinking additives. During the data collection, the properties of the modified binders prepared at 6, 10 and 14% of crumb rubber (CR), considering three types of modifications and eighteen blending scenarios with different interaction factors, were assessed in terms of penetration, softening point, rotational viscosity, storage stability, rheological parameters, and rutting and fatigue factors. Results showed that the Matern 5/2 Gaussian Process Regression (GPR) model demonstrated efficient performance in predicting physical, viscoelastic, rutting, and fatigue properties whereas wide artificial neural networks exhibited enhanced accuracy in predicting storage stability and rotational viscosity. The results also suggest that it is feasible to implement a single type of model developed using the Matern 5/2 GPR algorithm for accurately predicting all the TB-CRMB properties considered. The best models demonstrated that crosslinking additives significantly influenced TBCRMB production and performance. In TB-CRMB production, sulfur as a crosslinking additive showed better compatibility than trans-polyoctenamer-rubber and significantly reduced interaction temperatures at lower CR content, leading to energy savings compared to the traditional TB production.
Facial expression recognition (FER) poses a complex challenge due to diverse factors such as facial morphology variations, lighting conditions, and cultural nuances in emotion representation. To address these hurdles,...
详细信息
Facial expression recognition (FER) poses a complex challenge due to diverse factors such as facial morphology variations, lighting conditions, and cultural nuances in emotion representation. To address these hurdles, specific FER algorithms leverage advanced data analysis for inferring emotional states from facial expressions. In this study, we introduce a universal validation methodology assessing any FER algorithm's performance through a web application where subjects respond to emotive images. We present the labelled data database, FeelPix, generated from facial landmark coordinates during FER algorithm validation. FeelPix is available to train and test generic FER algorithms, accurately identifying users' facial expressions. A testing algorithm classifies emotions based on FeelPix data, ensuring its reliability. Designed as a computationally lightweight solution, it finds applications in online systems. Our contribution improves facial expression recognition, enabling the identification and interpretation of emotions associated with facial expressions, offering profound insights into individuals' emotional reactions. This contribution has implications for healthcare, security, human-computer interaction, and entertainment.
Understanding protein-protein interactions (PPIs) is fundamental to describe and to characterize the formation of biomolecular assemblies, and to establish the energetic principles underlying biological networks. One ...
详细信息
Understanding protein-protein interactions (PPIs) is fundamental to describe and to characterize the formation of biomolecular assemblies, and to establish the energetic principles underlying biological networks. One key aspect of these interfaces is the existence and prevalence of hot-spots (HS) residues that, upon mutation to alanine, negatively impact the formation of such protein-protein complexes. HS have been widely considered in research, both in case studies and in a few large-scale predictive approaches. This review aims to present the current knowledge on PPIs, providing a detailed understanding of the microspecifications of the residues involved in those interactions and the characteristics of those defined as HS through a thorough assessment of related field-specific methodologies. We explore recent accurate artificial intelligence-based techniques, which are progressively replacing well-established classical energy-based methodologies. This article is categorized under: Data Science > Databases and Expert Systems Structure and Mechanism > Computational Biochemistry and Biophysics Molecular and Statistical Mechanics > Molecular Interactions
Predicting attacks in Android malware devices using machinelearning for recommender systems-based IoT can be a challenging task. However, it is possible to use various machine-learning techniques to achieve this goal...
详细信息
Predicting attacks in Android malware devices using machinelearning for recommender systems-based IoT can be a challenging task. However, it is possible to use various machine-learning techniques to achieve this goal. An internet-based framework is used to predict and recommend Android malware on IoT devices. As the prevalence of Android devices grows, the malware creates new viruses on a regular basis, posing a threat to the central system's security and the privacy of the users. The suggested system uses static analysis to predict the malware in Android apps used by consumer devices. The training of the presented system is used to predict and recommend malicious devices to block them from transmitting the data to the cloud server. By taking into account various machine-learning methods, feature selection is performed and the K-Nearest Neighbor (KNN) machine-learning model is proposed. Testing was carried out on more than 10,000 Android applications to check malicious nodes and recommend that the cloud server block them. The developed model contemplated all four machine-learning algorithms in parallel, i.e., naive Bayes, decision tree, support vector machine, and the K-Nearest Neighbor approach and static analysis as a feature subset selection algorithm, and it achieved the highest prediction rate of 93% to predict the malware in real-world applications of consumer devices to minimize the utilization of energy. The experimental results show that KNN achieves 93%, 95%, 90%, and 92% accuracy, precision, recall and f1 measures, respectively.
The output of the absorption refrigeration system driven by exhaust gas is unstable and the efficiency is low. Therefore, it is necessary to keep the performance of absorption refrigeration systems in a stable state. ...
详细信息
The output of the absorption refrigeration system driven by exhaust gas is unstable and the efficiency is low. Therefore, it is necessary to keep the performance of absorption refrigeration systems in a stable state. This will help predict the dynamic parameters of the system and thus control the output of the system. This paper presents a machine-learning algorithm for predicting the key parameters of an ammonia-water absorption refrigeration system. Three new machine-learning algorithms, Elman, BP neural network (BPNN), and extreme learningmachine (ELM), are tested to predict the system parameters. The key control parameters of the system are predicted according to the exhaust gas parameters, and the cooling system is adjusted according to the predicted values to achieve the goal of stable cooling output. After comparison, the ELM algorithm has a fast learning speed, good generalization performance, and small test set error sum, so it is selected as the final optimal prediction algorithm.
Rocky desertification occurs in many karst terrains of the world and poses major challenges for regional sustainable development. Remotely sensed data can provide important information on rocky desertification. In thi...
详细信息
Rocky desertification occurs in many karst terrains of the world and poses major challenges for regional sustainable development. Remotely sensed data can provide important information on rocky desertification. In this study, three common open-access satellite image datasets (Sentinel-2B, Landsat-8, and Gaofen-6) were used for extracting information on rocky desertification in a typical karst region (Guangnan County, Yunnan) of southwest China, using three machine-learning algorithms implemented in the Python programming language: random forest (RF), bagged decision tree (BDT), and extremely randomized trees (ERT). Comparative analyses of the three data sources and three algorithms show that: (1) The Sentinel-2B image has the best capability for extracting rocky desertification information, with an overall accuracy (OA) of 85.21% using the ERT method. This can be attributed to the higher spatial resolution of the Sentinel-2B image than that of Landsat-8 and Gaofen-6 images and Gaofen-6's lack of the shortwave infrared (SWIR) bands suitable for mapping carbonate rocks. (2) The ERT method has the best classification results of rocky desertification. Compared with the RF and BDT methods, the ERT method has stronger randomness in modeling and can effectively identify important feature factors for extracting information on rocky desertification. (3) The combination of the Sentinel-2B images and the ERT method provides an effective, efficient, and free approach to information extraction for mapping rocky desertification. The study can provide a useful reference for effective mapping of rocky desertification in similar karst environments of the world, in terms of both satellite image sources and classification algorithms. It also provides important information on the total area and spatial distribution of different levels of rocky desertification in the study area to support decision making by local governments for sustainable development.
The rise in heatwaves due to climate change is becoming a significant concern for outdoor workers, particularly leading to an increasing number of heat-related illnesses. To address the challenge, this study aimed to ...
详细信息
The rise in heatwaves due to climate change is becoming a significant concern for outdoor workers, particularly leading to an increasing number of heat-related illnesses. To address the challenge, this study aimed to propose, as a process-based approach, a classification model using personal biometric characteristics to identify individuals who are vulnerable to extremely hot environments (i.e., high-risk groups). To this end, an experimental study was conducted, and experimental conditions were set in an environmental chamber by considering the extremely hot summer weather in Korea. With the data collected from a total of 70 people who voluntarily participated in the experiment, the classification model was developed by adopting multiple methodologies such as time-series clustering, independent samples t-test, and machine-learning algorithms. Consequently, it was found that the classification performance was the best with the multilayer perceptron algorithm, resulting in 0.800 in terms of the area under the receiver operating characteristic (AUROC) and 0.811 in terms of the area under the precision-recall curve (AUPRC). This study creates new ground in identifying individuals vulnerable to extremely hot environments in the domain of management in engineering by employing machine-learning-based classification algorithms with personal biometric characteristics. The proposed approach can be realized by utilizing a simple and low-cost bioelectrical impedance method for estimating human body composition (such as body fat mass and skeletal muscle mass) before they are put into the field. It is expected to aid in providing a more systematic and individualized management system for proactively preventing personal heat-related illnesses.
暂无评论