咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 化学
    • 1 篇 生物学
  • 1 篇 工学
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程

主题

  • 1 篇 tree shap algori...
  • 1 篇 ngboost algorith...
  • 1 篇 theft detection ...
  • 1 篇 whale optimizati...
  • 1 篇 majority weighte...

机构

  • 1 篇 univ technol mal...
  • 1 篇 univ teknol mala...
  • 1 篇 birmingham city ...
  • 1 篇 qassim univ coll...

作者

  • 1 篇 al-rimy bander a...
  • 1 篇 hussain saddam
  • 1 篇 al-shqeerat khal...
  • 1 篇 mustafa mohd waz...
  • 1 篇 saeed faisal

语言

  • 1 篇 英文
检索条件"主题词=majority weighted minority oversampling technique algorithm"
1 条 记 录,以下是1-10 订阅
排序:
A Novel Feature-Engineered-NGBoost Machine-Learning Framework for Fraud Detection in Electric Power Consumption Data
收藏 引用
SENSORS 2021年 第24期21卷 8423-8423页
作者: Hussain, Saddam Mustafa, Mohd Wazir Al-Shqeerat, Khalil Hamdi Ateyeh Saeed, Faisal Al-rimy, Bander Ali Saleh Univ Technol Malaysia Sch Elect Engn Johor Baharu 81310 Malaysia Qassim Univ Coll Comp Dept Comp Sci Buraydah 51452 Saudi Arabia Birmingham City Univ Sch Comp & Digital Technol Birmingham B4 7XG W Midlands England Univ Teknol Malaysia Sch Comp Fac Engn Johor Baharu 81310 Malaysia
This study presents a novel feature-engineered-natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially exe... 详细信息
来源: 评论