咨询与建议

限定检索结果

文献类型

  • 22 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 10 篇 电气工程
    • 6 篇 计算机科学与技术...
    • 4 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 测绘科学与技术
  • 13 篇 理学
    • 6 篇 统计学(可授理学、...
    • 5 篇 数学
    • 4 篇 物理学
    • 2 篇 生物学
    • 1 篇 地球物理学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 特种医学

主题

  • 25 篇 majorization-min...
  • 1 篇 mixture models
  • 1 篇 noise suppressio...
  • 1 篇 support vector r...
  • 1 篇 super-resolution
  • 1 篇 weighted-least s...
  • 1 篇 tp 391.4
  • 1 篇 a
  • 1 篇 iterative image ...
  • 1 篇 blind synchroniz...
  • 1 篇 acoustic object
  • 1 篇 outliers
  • 1 篇 huber regression...
  • 1 篇 nonuniform updat...
  • 1 篇 compressive sens...
  • 1 篇 d91
  • 1 篇 em-like algorith...
  • 1 篇 ordered subsets
  • 1 篇 deep learning
  • 1 篇 empirical proces...

机构

  • 1 篇 northeastern uni...
  • 1 篇 seoul natl univ ...
  • 1 篇 jiangsu univ dep...
  • 1 篇 yonsei univ sch ...
  • 1 篇 bowling green st...
  • 1 篇 univ tokyo ctr s...
  • 1 篇 miami univ dept ...
  • 1 篇 univ waterloo de...
  • 1 篇 chungnam natl un...
  • 1 篇 tokyo metropolit...
  • 1 篇 natl univ singap...
  • 1 篇 univ calif mesa ...
  • 1 篇 nanjing univ sta...
  • 1 篇 univ bologna dep...
  • 1 篇 univ waterloo de...
  • 1 篇 penn state univ ...
  • 1 篇 hainan univ sch ...
  • 1 篇 univ calif merce...
  • 1 篇 seoul natl univ ...
  • 1 篇 china jiliang un...

作者

  • 2 篇 tanji hiroki
  • 2 篇 kamata hiroyuki
  • 2 篇 murakami takahir...
  • 1 篇 ham bumsub
  • 1 篇 cavalcante renat...
  • 1 篇 bagnato luca
  • 1 篇 taylor a.
  • 1 篇 won joong-ho
  • 1 篇 zheng songfeng
  • 1 篇 sun zhongfan
  • 1 篇 shao yuan-hai
  • 1 篇 pollakis emmanue...
  • 1 篇 li li
  • 1 篇 qin jing
  • 1 篇 tsuchida jun
  • 1 篇 levine m.
  • 1 篇 gao peng
  • 1 篇 kawamura takao
  • 1 篇 dai jisheng
  • 1 篇 browne ryan p.

语言

  • 24 篇 英文
  • 1 篇 其他
检索条件"主题词=majorization-minimization algorithm"
25 条 记 录,以下是21-30 订阅
排序:
Acoustic object canceller: removing a known signal from monaural recording using blind synchronization
收藏 引用
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING 2023年 第1期2023卷 35页
作者: Kawamura, Takao Yamaoka, Kouei Wakabayashi, Yukoh Ono, Nobutaka Miyazaki, Ryoichi Tokyo Metropolitan Univ Dept Comp Sci Tokyo Japan Toyohashi Univ Technol Dept Comp Sci & Engn Toyohashi Aichi Japan Tokuyama Coll Natl Inst Technol Dept Comp Sci & Elect Engn Yamaguchi Japan
In this paper, we propose a technique for removing a specific type of interference from a monaural recording. Nonstationary interferences are generally challenging to eliminate from such recordings. However, if the in... 详细信息
来源: 评论
A nonconvex sparse recovery method for DOA estimation based on the trimmed lasso
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 153卷
作者: Bai, Longxin Zhang, Jingchao Qiao, Liyan Harbin Inst Technol Dept Automatic Test & Control Harbin 150001 Peoples R China
Sparse direction -of -arrival (DOA) estimation methods can be formulated as a group -sparse optimization problem. Meanwhile, sparse recovery methods based on nonconvex penalty terms have been a hot topic in recent yea... 详细信息
来源: 评论
Sparse Bayesian Approach for DOD and DOA Estimation With Bistatic MIMO Radar
收藏 引用
IEEE ACCESS 2019年 7卷 155335-155346页
作者: Cao, Zheng Zhou, Lei Dai, Jisheng Jiangsu Univ Dept Elect Engn Zhenjiang 212013 Jiangsu Peoples R China
This study addresses the problem of joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation with bistatic multiple-input multiple-output (MIMO) radar. To the best of our knowledge, a limited numbe... 详细信息
来源: 评论
L1 model-driven recursive multi-scale denoising network for image super-resolution
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2021年 225卷 107115-107115页
作者: Sun, Zhongfan Zhao, Jianwei Zhou, Zhenghua Gao, Qingqing China Jiliang Univ Coll Sci Dept Informat Sci & Math Hangzhou 310018 Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing 210093 Peoples R China
Most existing deep learning based single-image super-resolution (SISR) methods mainly improve the reconstruction performances from the perspective of data-driven, i.e., widening or deepening the networks according to ... 详细信息
来源: 评论
Adaptively robust geographically weighted regression
收藏 引用
SPATIAL STATISTICS 2022年 48卷 100623-100623页
作者: Sugasawa, Shonosuke Murakami, Daisuke Univ Tokyo Ctr Spatial Informat Sci Tokyo Japan Inst Stat Math Dept Stat Data Sci Tokyo Japan 5-1-5 Kashiwanoha Kashiwa Chiba 2778568 Japan
We develop a new robust geographically weighted regression method in the presence of outliers. We embed the standard geographically weighted regression in robust objective function based on gamma-divergence. A novel f... 详细信息
来源: 评论