咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 48 篇 会议

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 112 篇 工学
    • 78 篇 计算机科学与技术...
    • 46 篇 电气工程
    • 13 篇 测绘科学与技术
    • 11 篇 信息与通信工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 软件工程
    • 8 篇 控制科学与工程
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 生物工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
  • 37 篇 医学
    • 24 篇 临床医学
    • 9 篇 特种医学
    • 7 篇 基础医学(可授医学...
  • 34 篇 理学
    • 12 篇 地球物理学
    • 11 篇 物理学
    • 6 篇 生物学
    • 5 篇 地理学
    • 2 篇 数学
    • 2 篇 化学
    • 1 篇 天文学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 农学
    • 2 篇 作物学
  • 1 篇 教育学
    • 1 篇 体育学

主题

  • 120 篇 masked autoencod...
  • 33 篇 self-supervised ...
  • 12 篇 transformer
  • 11 篇 deep learning
  • 10 篇 feature extracti...
  • 9 篇 vision transform...
  • 9 篇 task analysis
  • 9 篇 training
  • 7 篇 transformers
  • 6 篇 contrastive lear...
  • 5 篇 anomaly detectio...
  • 5 篇 decoding
  • 5 篇 image reconstruc...
  • 5 篇 data models
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 multimodal
  • 4 篇 unsupervised lea...
  • 3 篇 image fusion
  • 3 篇 eeg

机构

  • 2 篇 univ sci & techn...
  • 2 篇 chinese acad sci...
  • 2 篇 univ sci & techn...
  • 2 篇 xidian univ sch ...
  • 2 篇 microsoft res as...
  • 2 篇 south china univ...
  • 2 篇 univ hong kong p...
  • 2 篇 singapore inst t...
  • 2 篇 xidian univ sch ...
  • 2 篇 univ massachuset...
  • 1 篇 southeast univ l...
  • 1 篇 xiamen univ sch ...
  • 1 篇 univ sci & techn...
  • 1 篇 henan polytech u...
  • 1 篇 university of sc...
  • 1 篇 north china univ...
  • 1 篇 bournemouth univ...
  • 1 篇 univ hong kong d...
  • 1 篇 univ chinese aca...
  • 1 篇 univ malaya fac ...

作者

  • 3 篇 liu wei
  • 2 篇 chen dongdong
  • 2 篇 song yan
  • 2 篇 zhang xixi
  • 2 篇 huang chao
  • 2 篇 chen dong
  • 2 篇 sadok samir
  • 2 篇 wang min
  • 2 篇 fang wei
  • 2 篇 ye yaowen
  • 2 篇 tao jianhua
  • 2 篇 xu yongshun
  • 2 篇 xia lianghao
  • 2 篇 mcloughlin ian
  • 2 篇 han shuo
  • 2 篇 xu ke
  • 2 篇 sun licai
  • 2 篇 li houqiang
  • 2 篇 rudolph yannick
  • 2 篇 leglaive simon

语言

  • 118 篇 英文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=masked autoencoder"
120 条 记 录,以下是71-80 订阅
排序:
Unsupervised Domain Adaptation with Hierarchical masked Dual-adversarial Network for End-to-end Classification of Multisource Remote Sensing Data
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Hu, Wen-Shuai Li, Wei Li, Heng-Chao Zhao, Xudong Zhang, Mengmeng Tao, Ran Beijing Institute of Technology School of Information and Electronics Beijing Key Laboratory of Fractional Signals and Systems National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing Beijing 100081 China Beijing Institute of Technology Guangdong Zhuhai 519088 China Southwest Jiaotong University School of Information Science and Technology Chengdu 611756 China
Although unsupervised domain adaptation (UDA) has been successfully applied for cross-scene classification of multisource remote sensing (MSRS) data, there are still some tough issues: 1) The vast majority of them are... 详细信息
来源: 评论
Bootstrapped masked autoencoders for Vision BERT Pretraining  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Dong, Xiaoyi Bao, Jianmin Zhang, Ting Chen, Dongdong Zhang, Weiming Yuan, Lu Chen, Dong Wen, Fang Yu, Nenghai Univ Sci & Technol China Hefei Peoples R China Microsoft Res Asia Beijing Peoples R China Microsoft Cloud AI Redmond WA 98052 USA
We propose bootstrapped masked autoencoders (BootMAE), a new approach for vision BERT pretraining. BootMAE improves the original masked autoencoders (MAE) with two core designs: 1) momentum encoder that provides onlin... 详细信息
来源: 评论
EXTENDING AUDIO masked autoencoderS TOWARD AUDIO RESTORATION
EXTENDING AUDIO MASKED AUTOENCODERS TOWARD AUDIO RESTORATION
收藏 引用
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
作者: Zhong, Zhi Shi, Hao Hirano, Masato Shimada, Kazuki Tateishi, Kazuya Shibuya, Takashi Takahashi, Shusuke Mitsufuji, Yuki Sony Grp Corp Tokyo Japan Kyoto Univ Kyoto Japan Sony Res Kyoto Japan
Audio classification and restoration are among major downstream tasks in audio signal processing. However, restoration derives less of a benefit from pretrained models compared to the overwhelming success of pretraine... 详细信息
来源: 评论
Tackling Missing Modalities in Audio-Visual Representation Learning Using masked autoencoders  25
Tackling Missing Modalities in Audio-Visual Representation L...
收藏 引用
25th Interspeech Conference
作者: Chochlakis, Georgios Lavania, Chandrashekhar Mathur, Prashant Han, Kyu J. Univ Southern Calif Los Angeles CA 90007 USA AWS AI Labs Seattle WA USA Amazon Seattle WA USA
Audio-visual representations leverage information from both modalities to produce joint representations. Such representations have demonstrated their usefulness in a variety of tasks. However, both modalities incorpor... 详细信息
来源: 评论
LR-MAE: Locate while Reconstructing with masked autoencoders for Point Cloud Self-supervised Learning
LR-MAE: Locate while Reconstructing with Masked Autoencoders...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Ji, Huizhen Zha, Yaohua Liao, Qingmin Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China
As an efficient self-supervised pre-training approach, masked autoencoder (MAE) has shown promising improvement across various 3D point cloud understanding tasks. However, the pretext task of existing point-based MAE ... 详细信息
来源: 评论
Unsupervised Pre-Training Using masked autoencoders for ECG Analysis
Unsupervised Pre-Training Using Masked Autoencoders for ECG ...
收藏 引用
2023 IEEE Biomedical Circuits and Systems Conference, BioCAS 2023
作者: Wang, Guoxin Wang, Qingyuan Iyer, Ganesh Neelakanta Nag, Avishek John, Deepu University College Dublin School of Electrical and Electronic Engineering Dublin 4 Ireland National University of Singapore Department of Computer Science Singapore
Unsupervised learning methods have become increasingly important in deep learning due to their demonstrated large utilization of datasets and higher accuracy in computer vision and natural language processing tasks. T... 详细信息
来源: 评论
SAGHOG: Self-supervised autoencoder for Generating HOG Features for Writer Retrieval  18th
SAGHOG: Self-supervised Autoencoder for Generating HOG Featu...
收藏 引用
18th International Conference on Document Analysis and Recognition (ICDAR)
作者: Peer, Marco Kleber, Florian Sablatnig, Robert TU Wien Comp Vis Lab Vienna Austria
This paper introduces Saghog, a self-supervised pretraining strategy for writer retrieval using HOG features of the binarized input image. Our preprocessing involves the application of the Segment Anything technique t... 详细信息
来源: 评论
Attentive Symmetric autoencoder for Brain MRI Segmentation  25th
Attentive Symmetric Autoencoder for Brain MRI Segmentation
收藏 引用
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Huang, Junjia Li, Haofeng Li, Guanbin Wan, Xiang Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Pazhou Lab Guangzhou 510330 Peoples R China
Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image un... 详细信息
来源: 评论
Swin MAE: masked autoencoders for small datasets
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2023年 第1期161卷 107037-107037页
作者: Xu, Zi'an Dai, Yin Liu, Fayu Chen, Weibing Liu, Yue Shi, Lifu Liu, Sheng Zhou, Yuhang Northeastern Univ Shenyang Peoples R China China Med Univ Shenyang Peoples R China Liaoning Jiayin Med Technol Co Shenyang Peoples R China
The development of deep learning models in medical image analysis is majorly limited by the lack of large -sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solv... 详细信息
来源: 评论
Text-augmented long-term relation dependency learning for knowledge graph representation
High-Confidence Computing
收藏 引用
High-Confidence Computing 2025年
作者: Quntao Zhu Mengfan Li Yuanjun Gao Yao Wan Xuanhua Shi Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
Knowledge graph (KG) representation learning aims to map entities and relations into a low-dimensional representation space, showing significant potential in many tasks. Existing approaches follow two categories: (1) ... 详细信息
来源: 评论