In this paper we consider a new variant of Networks of Polarized Evolutionary Processors (NPEP) named Generalized Networks of Evolutionary Polarized Processors (GNPEP) and propose them as solvers of combinatorial opti...
详细信息
In this paper we consider a new variant of Networks of Polarized Evolutionary Processors (NPEP) named Generalized Networks of Evolutionary Polarized Processors (GNPEP) and propose them as solvers of combinatorial optimization problems. Unlike the NPEP model, GNPEP uses its numerical evaluation over the processed data from a quantitative perspective, hence this model might be more suitable to solve specific hard problems in a more efficient and economic way. In particular, we propose a GNPEP network to solve a well-known NP-hard problem, namely the N-queens. We prove that this GNPEP algorithm requires a linear time in the size of a given instance. This result suggests that the GNPEP model is more suitable to address problems related to combinatorial optimization in which integer restrictions have a relevant role.
暂无评论