咨询与建议

限定检索结果

文献类型

  • 492 篇 期刊文献
  • 170 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 666 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 473 篇 工学
    • 331 篇 计算机科学与技术...
    • 111 篇 电气工程
    • 68 篇 生物工程
    • 59 篇 生物医学工程(可授...
    • 38 篇 控制科学与工程
    • 22 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 网络空间安全
  • 335 篇 理学
    • 241 篇 生物学
    • 82 篇 统计学(可授理学、...
    • 57 篇 数学
    • 21 篇 化学
    • 19 篇 系统科学
    • 7 篇 物理学
    • 5 篇 生态学
  • 109 篇 医学
    • 71 篇 基础医学(可授医学...
    • 39 篇 临床医学
    • 12 篇 公共卫生与预防医...
    • 10 篇 药学(可授医学、理...
  • 98 篇 农学
    • 14 篇 作物学
  • 49 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 8 篇 公共管理
  • 29 篇 经济学
    • 29 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 666 篇 microarray data
  • 103 篇 feature selectio...
  • 58 篇 gene selection
  • 50 篇 classification
  • 47 篇 gene expression
  • 33 篇 bioinformatics
  • 30 篇 clustering
  • 29 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 biclustering
  • 16 篇 data mining
  • 16 篇 feature extracti...
  • 15 篇 gene ontology
  • 14 篇 cancer
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...
  • 13 篇 gene expression ...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 indian stat inst...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 638 篇 英文
  • 27 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
666 条 记 录,以下是1-10 订阅
排序:
Optimization of dynamic bi-clustering based on improved genetic algorithm for microarray data
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2024年 第3期27卷 1-22页
作者: Ram, Pintu Kumar Kuila, Pratyay Natl Inst Technol Dept Comp Sci & Engn Ravangla 737139 Sikkim India
Due to the nature of microarray data, the analysis of genes/features for disease diagnosis is a challenging task. Generally, the data comes in the form of a 2D matrix, where the row represents the genes and the column... 详细信息
来源: 评论
An improved binary particle swarm optimization algorithm for clinical cancer biomarker identification in microarray data
收藏 引用
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024年 244卷 107987-107987页
作者: Yang, Guicheng Li, Wei Xie, Weidong Wang, Linjie Yu, Kun Northeastern Univ Coll Comp Sci & Engn Shenyang 110000 Liaoning Peoples R China Northeastern Univ Key Lab Intelligent Comp Med Image MIIC Minist Educ Shenyang 110000 Liaoning Peoples R China Natl Frontiers Sci Ctr Ind Intelligence & Syst Op Shenyang 110819 Peoples R China Northeastern Univ Coll Med & Bioinformat Engn Shenyang 110819 Liaoning Peoples R China
Background and Objective: The limited number of samples and high-dimensional features in microarray data make selecting a small number of features for disease diagnosis a challenging problem. Traditional feature selec... 详细信息
来源: 评论
Feature selection of microarray data using multidimensional graph neural network and supernode hierarchical clustering
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2024年 第3期57卷 1-29页
作者: Xie, Weidong Zhang, Shoujia Wang, Linjie Yu, Kun Li, Wei Northeastern Univ Sch Comp Sci & Engn Shenyang Peoples R China Northeastern Univ Key Lab Intelligent Comp Med Image MIIC Minist Educ Shenyang Peoples R China Northeastern Univ Coll Med & Bioinformat Engn Shenyang Peoples R China
Cancer remains a significant cause of mortality, and the application of microarray technology has opened new avenues for cancer diagnosis and treatment. However, due to the challenges in sample acquisition, the geneti... 详细信息
来源: 评论
Population characteristic exploitation-based multi-orientation multi-objective gene selection for microarray data classification
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2024年 170卷 108089-108089页
作者: Li, Min Cao, Rutun Zhao, Yangfan Li, Yulong Deng, Shaobo Nanchang Inst Technol Sch Informat Engn 289 Tianxiang Rd Nanchang Jiangxi Peoples R China
Gene selection is a process of selecting discriminative genes from microarray data that helps to diagnose and classify cancer samples effectively. Swarm intelligence evolution-based gene selection algorithms can never... 详细信息
来源: 评论
Investigation of recurrence prediction ability of EndoPredict® using microarray data from fresh frozen tissues in ER-positive, HER2-negative breast cancer and indication expansion of EndoPredict® from microarray data from fresh-frozen to FFPE tissues
收藏 引用
BREAST CANCER 2024年 第4期31卷 593-606页
作者: Watanabe, Akira Tsunashima, Ryo Kato, Chikage Kitano, Sae Matsumoto, Saya Sota, Yoshiaki Morita, Midori Sakaguchi, Koichi Naoi, Yasuto Kyoto Prefectural Univ Med Dept Endocrine & Breast Surg Kyoto Japan Rinku Gen Med Ctr Dept Breast & Endocrine Surg Osaka Japan Osaka Univ Grad Sch Med Dept Breast & Endocrine Surg Osaka Japan
Background EndoPredict (R) (EP) is a multigene assay to predict distant recurrence risk in luminal breast cancer. EP measures the expression of 12 genes in primary tumor by qRT-PCR from formalin-fixed paraffin-embedde... 详细信息
来源: 评论
Assessing gene stability and gene affinity in microarray data classification using an extended relieff algorithm
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第15期83卷 45761-45776页
作者: Srivastava, Neha Tayal, Devendra K. Indira Gandhi Delhi Tech Univ Women James ChurchNew Church RdOpp StKashmere Gate New Delhi 110006 Delhi India
microarray data have become an integral part of the clinical and drug discovery process. Due to its voluminous and heterogeneous nature, the question arises of the interpretability and stability of the traditional gen... 详细信息
来源: 评论
A Unified Multi-Class Feature Selection Framework for microarray data
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023年 第6期20卷 3725-3736页
作者: Ding, Xiaojian Yang, Fan Ma, Fumin Chen, Shilin Nanjing Univ Finance & Econ Coll Informat Engn Nanjing 210007 Peoples R China Nanjing Med Univ Jiangsu Canc Hosp Jiangsu Inst Canc Res Thorac SurgCanc Hosp Nanjing 211166 Jiangsu Peoples R China
In feature selection research, simultaneous multi-class feature selection technologies are popular because they simultaneously select informative features for all classes. Recursive feature elimination (RFE) methods a... 详细信息
来源: 评论
Dynamic scaling factor based differential evolution with multi-layer perceptron for gene selection from pathway information of microarray data
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第9期82卷 13453-13478页
作者: Ram, Pintu Kumar Kuila, Pratyay Natl Inst Technol Sikkim Dept Comp Sci & Engn Ravangla 737139 Sikkim India
The microarray data contains the high volume of genes having multiple values of expressions and small number of samples. Therefore, the selection of gene from microarray data is an extremely challenging and important ... 详细信息
来源: 评论
Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data
收藏 引用
BMC BIOINFORMATICS 2023年 第1期24卷 1-22页
作者: Wang, Zixuan Zhou, Yi Takagi, Tatsuya Song, Jiangning Tian, Yu-Shi Shibuya, Tetsuo Univ Tokyo Inst Med Sci Human Genome Ctr Div Med Data Informat Tokyo 1088639 Japan Peking Univ Beijing Int Ctr Math Res Beijing 100871 Peoples R China Osaka Univ Grad Sch Pharmaceut Sci 1-6 YamadaokaSuita Osaka 5650871 Japan Monash Univ Biomed Discovery Inst Melbourne Vic 3800 Australia Monash Univ Monash Data Futures Inst Melbourne Vic 3800 Australia
Backgroundmicroarray data have been widely utilized for cancer classification. The main characteristic of microarray data is "large p and small n" in that data contain a small number of subjects but a large ... 详细信息
来源: 评论
A New Evolutionary Ensemble Learning of Multimodal Feature Selection from microarray data
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第5期55卷 6753-6780页
作者: Nekouie, Nadia Romoozi, Morteza Esmaeili, Mahdi Islamic Azad Univ Dept Comp Engn Kashan Branch Kashan Iran
In the last decades, data has grown exponentially with respect to the number of samples and features. This makes the feature selection (FS) more challenging. In this paper, an optimization method called the multimodal... 详细信息
来源: 评论