咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 548 篇 工学
    • 385 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 433 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 156 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 52 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 9 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 770 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
770 条 记 录,以下是211-220 订阅
排序:
Classification of microarray cancer data using ensemble approach
收藏 引用
NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2013年 第3期2卷 159-173页
作者: Nagi, Sajid Bhattacharyya, Dhruba Kr St Edmunds Coll Dept Comp Sci Shillong 793001 Meghalaya India Tezpur Univ Dept Comp Sci & Engn Napaam 784028 Assam India
An ensemble of classifiers is created by combining predictions of multiple component classifiers for improving prediction performance. In this paper, we conduct experimental comparison of J48, NB, IBK on nine microarr... 详细信息
来源: 评论
Merging microarray studies to identify a common gene expression signature to several structural heart diseases
收藏 引用
BIOdata MINING 2020年 第1期13卷 8-8页
作者: Fajarda, Olga Duarte-Pereira, Sara Silva, Raquel M. Oliveira, Jose Luis Univ Aveiro IEETA DETI P-3810193 Aveiro Portugal Univ Aveiro Dept Med Sci P-3810193 Aveiro Portugal Univ Aveiro iBiMED Inst Biomed P-3810193 Aveiro Portugal Univ Catolica Portuguesa Fac Med Dent CIIS Ctr Invest Interdisciplinar Saude Campus Viseu P-3504505 Viseu Portugal
Background Heart disease is the leading cause of death worldwide. Knowing a gene expression signature in heart disease can lead to the development of more efficient diagnosis and treatments that may prevent premature ... 详细信息
来源: 评论
Enhanced Cancer Subtyping via Pan-Transcriptomics data Fusion, Monte-Carlo Consensus Clustering, and Auto Classifier Creation  10
Enhanced Cancer Subtyping via Pan-Transcriptomics Data Fusio...
收藏 引用
10th International Conference on Computational Systems-Biology and Bioinformatics (CSBio)
作者: Linton-Reid, Kristofer Clifford, Harry Thompson, Joe Sneath Imperial Coll London London England Cambridge Canc Genom Cambridge England
Subtyping of tumor transcriptome expression profiles is a routine method used to distinguish tumor heterogeneity. Unsupervised clustering techniques are often combined with survival analysis to decipher the relationsh... 详细信息
来源: 评论
A New F-Test Applicable to Large-Scale data
收藏 引用
Journal of Statistical Theory and Applications 2019年 第4期18卷 439-449页
作者: Salehi, Mohsen Mohammadpour, Adel Mengersen, Kerrie Department of Statistics University of Qom Qom Iran Department of Statistics Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran Science and Engineering Faculty Queensland University of Technology Brisbane Australia
In large-scale multiple testing, the permutation test based on making a null statistic has been widely employed in the literature. Because it enables us to use the null permuted samples and estimate the p-value more a... 详细信息
来源: 评论
Population based study on arsenic induced blood samples employing hybrid metaheuristic optimization based ML approach
Population based study on arsenic induced blood samples empl...
收藏 引用
IEEE-Region-10 Symposium (TENSYMP)
作者: Dey, Anirban Das Sharma, Kaushik Sanyal, Tamalika Bhattacharjee, Pritha, Jr. Bhattacharjee, Pritha Univ Calcutta Dept Appl Phys Kolkata India Univ Calcutta Dept Environm Sci Kolkata India
Long term exposure to arsenic may lead to the development of multi-organ ailments with several non-dermatological, non-malignant outcomes and hence considered as a paradoxical human carcinogen, requires major attentio... 详细信息
来源: 评论
Permutation test for incomplete paired data with application to cDNA microarray data
收藏 引用
COMPUTATIONAL STATISTICS & data ANALYSIS 2012年 第3期56卷 510-521页
作者: Yu, Donghyeon Lim, Johan Liang, Feng Kim, Kyunga Kim, Byung Soo Jang, Woncheol Univ Georgia Dept Epidemiol & Biostat Athens GA 30602 USA Seoul Natl Univ Dept Stat Seoul South Korea Univ Illinois Dept Stat Urbana IL USA Sookmyung Womens Univ Dept Stat Seoul South Korea Yonsei Univ Dept Appl Stat Seoul 120749 South Korea
A paired data set is common in microarray experiments, where the data are often incompletely observed for some pairs due to various technical reasons. In microarray paired data sets, it is of main interest to detect d... 详细信息
来源: 评论
The classification of cancer stage microarray data
收藏 引用
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012年 第3期108卷 1070-1077页
作者: Chen, Chi-Kan Natl Chung Hsing Univ Dept Appl Math Taichung Taiwan
Correctly diagnosing the cancer stage is most important for selecting an appropriate cancer treatment option for a patient. Recent advances in microarray technology allow the cancer stage to be predicted using gene ex... 详细信息
来源: 评论
Enhanced cancer subtyping via pan-transcriptomics data fusion, Monte-Carlo consensus clustering, and auto classifier creation  19
Enhanced cancer subtyping via pan-transcriptomics data fusio...
收藏 引用
Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics
作者: Kristofer Linton-Reid Harry Clifford Joe Sneath Thompson Imperial College London South Kensington London United Kingdom Cambridge Cancer Genomics Cambridge United Kingdom
Subtyping of tumor transcriptome expression profiles is a routine method used to distinguish tumor heterogeneity. Unsupervised clustering techniques are often combined with survival analysis to decipher the relationsh... 详细信息
来源: 评论
Computational intelligence for microarray data and biomedical image analysis for the early diagnosis of breast cancer
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2012年 第16期39卷 12371-12377页
作者: Nahar, Jesmin Imam, Tasadduq Tickle, Kevin S. Ali, A. B. M. Shawkat Chen, Yi-Ping Phoebe Cent Queensland Univ Fac Arts Business Informat & Educ Rockhampton Qld 4702 Australia La Trobe Univ Dept Comp Sci & Comp Engn Melbourne Vic 3086 Australia
The objective of this paper was to perform a comparative analysis of the computational intelligence algorithms to identify breast cancer in its early stages. Two types of data representations were considered: microarr... 详细信息
来源: 评论
Clustering microarray data: Theoretical and Practical Issues
收藏 引用
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS 2012年 第16-17期41卷 3211-3232页
作者: Di Lascio, F. Marta L. Giannerini, Simone Univ Bologna Dept Stat Sci I-40126 Bologna Italy
The analysis of microarray data is a widespread functional genomics approach that allows for the monitoring of the expression of thousands of genes at once. The analysis of the great amount of data generated in a micr... 详细信息
来源: 评论