咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 548 篇 工学
    • 385 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 433 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 156 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 52 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 9 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 770 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
770 条 记 录,以下是271-280 订阅
排序:
Regularized logistic regression without a penalty term: An application to cancer classification with microarray data
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2011年 第5期38卷 5110-5118页
作者: Bielza, Concha Robles, Victor Larranaga, Pedro Tech Univ Madrid Dept Artificial Intelligence Madrid Spain Tech Univ Madrid Dept Comp Architecture & Technol Madrid Spain
Regularized logistic regression is a useful classification method for problems with few samples and a huge number of variables. This regression needs to determine the regularization term, which amounts to searching fo... 详细信息
来源: 评论
Sequential patterns mining and gene sequence visualization to discover novelty from microarray data
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2011年 第5期44卷 760-774页
作者: Sallaberry, A. Pecheur, N. Bringay, S. Roche, M. Teisseire, M. Irstea UMR TETIS Maison Teledetect F-34093 Montpellier France Univ Montpellier 3 MIAp Dept F-34199 Montpellier 5 France Univ Montpellier 2 CNRS LIRMM F-34095 Montpellier 5 France INRIA Bordeaux Sud Ouest LaBRI F-33405 Talence France
data mining allow users to discover novelty in huge amounts of data. Frequent pattern methods have proved to be efficient, but the extracted patterns are often too numerous and thus difficult to analyze by end users. ... 详细信息
来源: 评论
A SIMPLIFIED SWARM OPTIMIZATION FOR DISCOVERING THE CLASSIFICATION RULE USING microarray data OF BREAST CANCER
收藏 引用
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 2011年 第5A期7卷 2235-2246页
作者: Yeh, Wei-Chang Chang, Wei-Wen Chiu, Chuan-Wei Natl Tsing Hua Univ Dept Ind Engn & Engn Management Hsinchu 30013 Taiwan
microarray data analysis is a major line of research in bioinformatics. A significant trend in bioinformatics is identifying genes or gene groups that differentiate diseased tissues. Classification is necessary to mak... 详细信息
来源: 评论
Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2011年 第5期38卷 4661-4667页
作者: Lee, Chien-Pang Lin, Wen-Shin Chen, Yuh-Min Kuo, Bo-Jein Natl Chung Hsing Univ Dept Agron Div Biometry Taichung 40227 Taiwan China Med Univ Sch Nursing Taichung 40402 Taiwan
Recently, microarray technology has widely used on the study of gene expression in cancer diagnosis. The main distinguishing feature of microarray technology is that can measure thousands of genes at the same time. In... 详细信息
来源: 评论
Exploring the Feasibility of Next-Generation Sequencing and microarray data Meta-Analysis
Exploring the Feasibility of Next-Generation Sequencing and ...
收藏 引用
33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS)
作者: Wu, Po-Yen Phan, John H. Wang, May D. Georgia Inst Technol Dept Elect & Comp Engn Atlanta GA 30332 USA Georgia Inst Technol Dept Biomed Engn Atlanta GA 30332 USA
Emerging next-generation sequencing (NGS) technology potentially resolves many issues that prevent widespread clinical use of gene expression microarrays. However, the number of publicly available NGS datasets is stil... 详细信息
来源: 评论
The Design of Evolutionary Multiple Classifier System for the Classification of microarray data
The Design of Evolutionary Multiple Classifier System for th...
收藏 引用
8th International Symposium on Neural Networks
作者: Liu, Kun-Hong Wu, Qing-Qiang Wang, Mei-Hong Xiamen Univ Software Sch Xiamen 361005 Fujian Province Peoples R China
Designing an evolutionary multiple classifier system (MCS) is a relatively new research area. In this paper, we propose a genetic algorithm (GA) based MCS for microarray data classification. In detail, we construct a ... 详细信息
来源: 评论
A Novel Approach to Select Important Genes from microarray data
A Novel Approach to Select Important Genes from Microarray D...
收藏 引用
23rd Chinese Control and Decision Conference
作者: Wang, Xianchang Zhang, Lishi Du, Junfu Dalian Ocean Univ Sch Sci Dalian 116023 Peoples R China
Feature subset selection is a well-known pattern recognition problem, which aims to reduce the number of features used in classification or recognition. This reduction is expected to improve the performance of classif... 详细信息
来源: 评论
FEATURE DISCRETIZATION AND SELECTION IN microarray data
FEATURE DISCRETIZATION AND SELECTION IN MICROARRAY DATA
收藏 引用
International Conference on Knowledge Discovery and Information Retrieval
作者: Ferreira, Artur Figueiredo, Mario Inst Super Engn Lisboa Lisbon Portugal Inst Super Tecn Lisbon Portugal Inst Telecomunicacoes Lisbon Portugal
Tumor and cancer detection from microarray data are important bioinformatics problems. These problems are quite challenging for machine learning methods, since microarray datasets typically have a very large number of... 详细信息
来源: 评论
Numerical Methods for Genetic Regulatory Network Identification Based on a Variational Approach
收藏 引用
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS 2016年 第1期16卷 77-103页
作者: Feng, Xiaobing Yoon, Miun Univ Tennessee Dept Math Knoxville TN 37996 USA
This paper studies differential equation-based mathematical models and their numerical solutions for genetic regulatory network identification. The primary objectives are to design, analyze, and test a general variati... 详细信息
来源: 评论
Hidden discriminative features extraction for supervised high-order time series modeling
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2016年 第0期78卷 81-90页
作者: Ngoc Anh Thi Nguyen Yang, Hyung-Jeong Kim, Sunhee Chonnam Natl Univ Dept Comp Sci Gwangju 500757 South Korea Univ Danang Univ Educ Fac Informat Technol Da Nang Vietnam Korea Univ Dept Brain & Cognit Engn Seoul 136713 South Korea
In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative sub-spaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction... 详细信息
来源: 评论