咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 171 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 771 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 549 篇 工学
    • 386 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 40 篇 控制科学与工程
    • 24 篇 软件工程
    • 22 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 4 篇 网络空间安全
    • 3 篇 机械工程
  • 434 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 61 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 157 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 53 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 10 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 771 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
771 条 记 录,以下是601-610 订阅
排序:
Probabilistic Graphical Models and Deep Belief Networks for Prognosis of Breast Cancer  14
Probabilistic Graphical Models and Deep Belief Networks for ...
收藏 引用
IEEE 14th International Conference on Machine Learning and Applications ICMLA
作者: Khademi, Mahmoud Nedialkov, Nedialko S. McMaster Univ Dept Comp & Software Hamilton ON Canada
We propose a probabilistic graphical model (PGM) for prognosis and diagnosis of breast cancer. PGMs are suitable for building predictive models in medical applications, as they are powerful tools for making decisions ... 详细信息
来源: 评论
Computational Identification of Proteins Sub-network in Parkinson's Disease Study
Computational Identification of Proteins Sub-network in Park...
收藏 引用
6th International Conference on Anti-Counterfeiting, Security and Identification (ASID)
作者: Huang, Yue Zhang, Jun Huang, Yunying Xiamen Univ Dept Commun Engn Xiamen Peoples R China Xiamen Univ Tan Kah Kee Coll Dept Elect Engn Xiamen Peoples R China
Parkinson's disease (PD) is a typical case of neurodegenerative disorder, which often impairs the sufferer's motor skills, speech, and other functions. Combination of protein-protein interaction (PPI) network ... 详细信息
来源: 评论
CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES, BONFERRONI AND STABILITY OF MULTIPLE TESTING
收藏 引用
ANNALS OF APPLIED STATISTICS 2007年 第1期1卷 179-190页
作者: Gordon, Alexander Glazko, Galina Qiu, Xing Yakovlev, Andrei Univ Rochester Dept Biostat & Computat Biol Rochester NY 14642 USA Univ N Carolina Dept Math & Stat Charlotte NC 28223 USA
The Bonferroni multiple testing procedure is commonly perceived as being overly conservative in large-scale Simultaneous testing situations such as those that arise in microarray data analysis. The objective of the pr... 详细信息
来源: 评论
Phase-wise Clustering of Time Series Gene Expression data
Phase-wise Clustering of Time Series Gene Expression Data
收藏 引用
Int Joint Conference of 10th IEEE Int Conf on Trust, Security and Privacy in Computing and Communications (TrustCom) / 8th IEEE Int Conf on Embedded Software and Systems (ICESS) / 6th Int Conf on Frontier of Computer Science and Technology (FCST)
作者: Goyal, Poonam Karwa, Rohan Sunil Goyal, Navneet John, Matthew BITS Pilani Dept Comp Sci Pilani Rajasthan India
Extensive studies have shown that analyzing microarray time series data is important in bioinformatics research and biomedical applications. An observation in the analysis of gene expression data is that many genes ha... 详细信息
来源: 评论
Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models
收藏 引用
Journal of Bioinformatics and Computational Biology 2005年 第6期3卷 1295-1313页
作者: Tamada, Yoshinori Bannai, Hideo Imoto, Seiya Katayama, Toshiaki Kanehisa, Minoru Miyano, Satoru Bioinformatics Center Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Gokasho Japan Human Genome Center Institute of Medical Science The University of Tokyo Minato-ku Tokyo 108-8639 4-6-1 Shirokanedai Japan
Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies hav... 详细信息
来源: 评论
Markov Blanket: Efficient Strategy For Feature Subset Selection Method For High Dimensional microarray Cancer datasets
Markov Blanket: Efficient Strategy For Feature Subset Select...
收藏 引用
Biological Ontologies and Knowledge Bases Workshop at IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
作者: Passi, Kalpdrum Nour, Abdala Jain, Chakresh Kumar Laurentian Univ Dept Math & Comp Sci Sudbury ON Canada Jaypee Inst Informat Technol Dept Biotechnol Noida India
In this paper, we discuss the importance of feature subset selection methods in machine learning techniques. An analysis of microarray expression was used to check whether global biological differences underlie common... 详细信息
来源: 评论
An Incremental Updating Based Fast Phenotype Structure Learning Algorithm
An Incremental Updating Based Fast Phenotype Structure Learn...
收藏 引用
10th International Conference on Intelligent Computing (ICIC)
作者: Cheng, Hao Zhao, Yu-Hai Yin, Ying Zhang, Li-Jun Northeastern Univ Coll Informat Sci & Engn Shenyang Peoples R China Northeastern Univ Coll Sci Shenyang Peoples R China
Unsupervised phenotype structure learning is important in microarray data analysis. The goal is to (1) find groups of samples corresponding to different phenotypes (e.g. disease or normal), and (2) find a subset of ge... 详细信息
来源: 评论
Inference of gene regulatory networks using S-system and differential evolution  05
Inference of gene regulatory networks using S-system and dif...
收藏 引用
Genetic and Evolutionary Computation Conference
作者: Noman, Nasimul Iba, Hitoshi Univ Tokyo Dept Frontier Informat Chiba 2778561 Japan
In this work we present an improved evolutionary method for inferring S-system model of genetic networks from the time series data of gene expression. We employed Differential Evolution (DE) for optimizing the network... 详细信息
来源: 评论
Inferring gene regulatory networks from multiple data sources via a dynamic Bayesian network with structural EM
收藏 引用
4th International Workshop on data Integration in the Life Sciences
作者: Zhang, Yu Deng, Zhidong Jiang, Hongshan Jia, Peifa Tsinghua Univ Comp Sci & Technol Dept State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China Tsinghua Univ Dept Comp Sci Beijing 100084 Peoples R China
Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site... 详细信息
来源: 评论
S-System Based Gene Regulatory Network Reconstruction Using Firefly Algorithm  3
S-System Based Gene Regulatory Network Reconstruction Using ...
收藏 引用
3rd International Conference on Computer, Communication, Control and Information Technology (C3IT)
作者: Mandal, Sudip Saha, Goutam Pal, Rajat K. GIMT ECE Dept Krishna Nagar India NEHU IT Dept Shillong Meghalaya India Univ Calcutta CSE Dept Kolkata India
The correct inference of gene regulatory network plays a critical role in understanding biological regulation in cells and genome based therapeutics. DNA microarray is the most widely used technology for extracting th... 详细信息
来源: 评论