咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 171 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 771 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 549 篇 工学
    • 386 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 40 篇 控制科学与工程
    • 24 篇 软件工程
    • 22 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 4 篇 网络空间安全
    • 3 篇 机械工程
  • 434 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 61 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 157 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 53 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 10 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 771 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 33 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
771 条 记 录,以下是611-620 订阅
排序:
Fuzzy Set Similarity for Feature Selection in Classification
Fuzzy Set Similarity for Feature Selection in Classification
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: Cross, Valerie Zmuda, Michael Paul, Rahul Hall, Lawrence Miami Univ Comp Sci & Software Engn Oxford OH 45056 USA Univ S Florida Comp Sci & Engn Tampa FL 33620 USA
A problem for machine learning research occurs when many possible features exist but the training data examples are very few. For example, microarray data typically have a much larger number of features, the genes, as... 详细信息
来源: 评论
microarray cancer feature selection: Review, challenges and research directions
收藏 引用
International Journal of Cognitive Computing in Engineering 2020年 1卷 78-97页
作者: Hambali, Moshood A. Oladele, Tinuke O. Adewole, Kayode S. Department of Computer Science Federal University Wukari Taraba Nigeria Department of Computer Science University of Ilorin Kwara Nigeria
microarray technology has become an emerging trend in the domain of genetic research in which many researchers employ to study and investigate the levels of genes’ expression in a given organism. microarray experimen... 详细信息
来源: 评论
An Iterated Conditional Modes Solution for Sparse Bayesian Factor Modeling of Transcriptional Regulatory Networks
An Iterated Conditional Modes Solution for Sparse Bayesian F...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Meng, Jia Zhang, Jianqiu Chen, Yidong Huang, Yufei Univ Texas San Antonio Dept Elect & Comp Engn San Antonio TX 78249 USA UT Hlth Sci Ctr San Antonio Dept Epidemiol & Biostat San Antonio TX USA UT Hlth Sci Ctr San Antonio Greehey Childrens Canc Res Inst San Antonio TX USA
The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) coupled with its ICM solut... 详细信息
来源: 评论
Model-free Bias Reduction of Storey’s Estimator for the Proportion of True Null Hypotheses
收藏 引用
Calcutta Statistical Association Bulletin 2022年 第1期74卷 27-41页
作者: Biswas, Aniket Department of Statistics Dibrugarh University Assam Dibrugarh India
Storey’s bootstrap estimator for the proportion of true null hypotheses (π0) has a known bias structure but the amount of bias is obviously unknown. A new method has been proposed in this work to reduce bias of the ... 详细信息
来源: 评论
Internal Evaluation Measures as Proxies for External Indices in Clustering Gene Expression data
Internal Evaluation Measures as Proxies for External Indices...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Vukicevic, Milan Delibasic, Boris Jovanovic, Milos Suknovic, Milija Obradovic, Zoran Univ Belgrade Fac Org Sci Ctr Business Decis Making Belgrade Serbia Temple Univ Ctr Data Analyt & Biomed Informat Philadelphia PA 19122 USA
Several external indices that use information not present in the dataset were shown to be useful for evaluation of representative based clustering algorithms. However, such supervised measures are not directly useful ... 详细信息
来源: 评论
Gene Selection Using Interaction Information for microarray-based Cancer Classification  13
Gene Selection Using Interaction Information for Microarray-...
收藏 引用
13th IEEE Annual Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB)
作者: Nakariyakul, Songyot Thammasat Univ Dept Elect & Comp Engn Khlong Luang 12120 Pathumthani Thailand
Gene selection is an important pre-processing step in microarray analysis and classification. While traditional gene selection algorithms focus on identifying relevant and irredundant genes, we present a new gene sele... 详细信息
来源: 评论
Enhanced Cancer Subtyping via Pan-Transcriptomics data Fusion, Monte-Carlo Consensus Clustering, and Auto Classifier Creation  10
Enhanced Cancer Subtyping via Pan-Transcriptomics Data Fusio...
收藏 引用
10th International Conference on Computational Systems-Biology and Bioinformatics (CSBio)
作者: Linton-Reid, Kristofer Clifford, Harry Thompson, Joe Sneath Imperial Coll London London England Cambridge Canc Genom Cambridge England
Subtyping of tumor transcriptome expression profiles is a routine method used to distinguish tumor heterogeneity. Unsupervised clustering techniques are often combined with survival analysis to decipher the relationsh... 详细信息
来源: 评论
A multivariate extension of the gene set enrichment analysis
收藏 引用
Journal of Bioinformatics and Computational Biology 2007年 第5期5卷 1139-1153页
作者: Klebanov, Lev Glazko, Galina Salzman, Peter Yakovlev, Andrei Xiao, Yuanhui Department of Probability and Statistics Charles University Praha-8 CZ-18675 Sokolovska 83 Czech Republic Department of Biostatistics and Computational Biology University of Rochester Rochester NY 14642 601 Elmwood Avenue United States Department of Mathematics and Statistics Georgia State University Atlanta GA 30303 United States
A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structu... 详细信息
来源: 评论
A THREE-STAGE METHOD TO SELECT INFORMATIVE GENES FOR CANCER CLASSIFICATION
A THREE-STAGE METHOD TO SELECT INFORMATIVE GENES FOR CANCER ...
收藏 引用
40th ISCIE International Symposium on Stochastic Systems Theory and Its Applications
作者: Mohamad, Mohd Saberi Omatu, Sigeru Yoshioka, Michifumi Deris, Safaai Osaka Prefecture Univ Grad Sch Engn Dept Comp Sci & Intelligent Syst Osaka 5998531 Japan Univ Teknol Malaysia Dept Software Engn Fac Comp Sci & Informat Syst Skudai 81310 Johore Malaysia
microarray technology has provided biologists with the ability to measure the expression levels of thousands of genes in a single experiment. One of the urgent issues in the use of microarray data is the selection of ... 详细信息
来源: 评论
Finding Marker Genes from High Dimensional Expression Profiles: Divide-and-conquer Exploiting a Fuzzy Rule Based Framework
Finding Marker Genes from High Dimensional Expression Profil...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ)
作者: Huang, Sheng-Yao Chen, Yi-Cheng Chung, I-Fang Yang, Feng-Yi Su, Chun-Hung Natl Yang Ming Univ Inst Biomed Informat Taipei 112 Taiwan Natl Yang Ming Univ Dept Biomed Imaging & Radiol Sci Taipei Taiwan Biodivers Res Ctr Acad Sinica Taipei Taiwan
Previously we have developed a feature selection mechanism (Fuzzy Systems - Feature Attenuating Gates, FS-FAG), which cannot deal with very high dimensional data in an efficient manner. To address this issue, in this ... 详细信息
来源: 评论