咨询与建议

限定检索结果

文献类型

  • 598 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 774 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 549 篇 工学
    • 386 篇 计算机科学与技术...
    • 136 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 436 篇 理学
    • 336 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 158 篇 医学
    • 75 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 122 篇 农学
    • 32 篇 作物学
  • 55 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 11 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 774 篇 microarray data
  • 103 篇 feature selectio...
  • 61 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 741 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
774 条 记 录,以下是761-770 订阅
排序:
Weighted Local Least Squares Imputation Method for Missing Value Estimation
Weighted Local Least Squares Imputation Method for Missing V...
收藏 引用
第一届最优化与系统生物学国际研讨会
作者: Wai-Ki Ching Kwai-Wa Cheng Li-Min Li Nam-Kiu Tsing Alice S. Wong Advanced Modeling and Applied Computing Laboratory Department of MathematicsThe University of Hong Kong Anderson Cancer Center The University of Texas Department of Zoology The University of Hong Kong
Missing values often exist in the data of gene expression microarray experiments. A number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute algorithm have been proposed to estimate the... 详细信息
来源: 评论
Two Extensions to Multi-label Correlation-Based Feature Selection: a case study in bioinformatics
Two Extensions to Multi-label Correlation-Based Feature Sele...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: Suwimol Jungjit M. Michaelis Alex A. Freitas J. Cinatl School of Computing University of Kent Canterbury CT2 7NF UK School of Biosciences University of Kent Canterbury CT2 7NJ UK Institut fuer Medizinische Virologie Klinikum der Goethe-Universitaet Paul Ehrlich-Str. 40 60596 Frankfurt am Main Germany
This paper proposes two extensions to a Multi-Label Correlation Based Feature Selection Method (ML-CFS): (1) ML-CFS using the absolute value of the correlation coefficient in the equation for evaluating a candidate fe... 详细信息
来源: 评论
Accelerating Incremental Wrapper based Gene Selection with K-Nearest-Neighbor
Accelerating Incremental Wrapper based Gene Selection with K...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine
作者: Aiguo Wang Ning An Guilin Chen Lian Li Gil Alterovitz The Gerontechnology Lab School of Computer and Information Hefei University of Technology School of Computer and Information Engineering Chuzhou University Center for Biomedical Informatics Harvard Medical School
Wrapper based gene selection methods tend to obtain better classification accuracy than filter methods, while it is much more time consuming. Accelerating this process without degrading the high accuracy is of great v... 详细信息
来源: 评论
A Integrated Computational Approach for Protein Sub-network Detection in Parkinson's Disease
A Integrated Computational Approach for Protein Sub-network ...
收藏 引用
2010 3rd International Conference on Computer and Electrical Engineering(ICCEE 2010)
作者: Yue Huang Yunying Huang Institute of Signal and Information Processing Department of Communication Engineering Xiamen University Department of Electronic Engineering Xiamen University
Parkinson's disease (PD) is a typical case of neurodegenerative disorder, which often impairs the sufferer's motor skills, speech, and other functions. Combination of protein-protein interaction (PPI) network ... 详细信息
来源: 评论
A Novel SVM-RFE for Gene Selection
A Novel SVM-RFE for Gene Selection
收藏 引用
第三届最优化与系统生物学国际研讨会
作者: Jun-Yan Tan Zhi-Xia Yang Naiyang Deng College of Science China Agricultural University College of Mathematics and Systems Science Xinjiang University Academy of Mathematics and Systems Science CAS
Selecting a subset of informative genes from microarray expression data is a critical data preparation step in cancer classification and other biological function *** support vector machine recursive feature eliminati... 详细信息
来源: 评论
Fuzzy rule based unsupervised approach for gene saliency
收藏 引用
BMC BIOINFORMATICS 2009年 第Sup7期10卷 1-1页
作者: Verma, Nishchal K. Agrawal, Pooja Cui, Yan Univ Tennessee Ctr Integrat & Translat Gen Dept Mol Sci Memphis TN 38163 USA
An abstract of a study related to unsupervised approach on gene saliency based on the fuzzy rule, which was conducted by Nishchal K. Verma, Pooja Agrawal, and Yan Cui, is presented.
来源: 评论
Enhanced cancer subtyping via pan-transcriptomics data fusion, Monte-Carlo consensus clustering, and auto classifier creation  19
Enhanced cancer subtyping via pan-transcriptomics data fusio...
收藏 引用
Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics
作者: Kristofer Linton-Reid Harry Clifford Joe Sneath Thompson Imperial College London South Kensington London United Kingdom Cambridge Cancer Genomics Cambridge United Kingdom
Subtyping of tumor transcriptome expression profiles is a routine method used to distinguish tumor heterogeneity. Unsupervised clustering techniques are often combined with survival analysis to decipher the relationsh... 详细信息
来源: 评论
Using partially ordered sets to represent and predict true patterns of gene response to treatments
收藏 引用
BMC BIOINFORMATICS 2013年 第17-Sup期14卷 A20-A20页
作者: Vo, Nam S. Vinhthuy Phan Univ Memphis Dept Comp Sci Memphis TN 38152 USA
Doc number: A20
来源: 评论
A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining
收藏 引用
BMC MEDICAL GENOMICS 2008年 第1期1卷 46-46页
作者: Chen, Bor-Sen Yang, Shih-Kuang Lan, Chung-Yu Chuang, Yung-Jen Natl Tsing Hua Univ Dept Elect Engn Lab Control & Syst Biol Hsinchu 300 Taiwan Natl Tsing Hua Univ Dept Life Sci Hsinchu 300 Taiwan
Background: Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic eve... 详细信息
来源: 评论
Identification of ESCC Potential Biomarkers using Biclustering Algorithms
收藏 引用
GENE REPORTS 2022年 27卷
作者: Baruah, Bikash Dutta, Manash P. Bhattacharyya, Dhruba K. NIT Arunachal Pradesh Dept Comp Sci & Engn Jote India Tezpur Univ Dept Comp Sci & Engn Tezpur Assam India
An extensive empirical study is presented in this work to identify potential biomarkers of ESCC by employing fifteen prominent biclustering algorithms on synthetic and real datasets. For systematic analyses, we implem... 详细信息
来源: 评论