咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 548 篇 工学
    • 385 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 433 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 156 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 52 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 9 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 770 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=microarray Data"
770 条 记 录,以下是81-90 订阅
Evaluation of Partitioning Around Medoids Algorithm with Various Distances on microarray data  10
Evaluation of Partitioning Around Medoids Algorithm with Var...
收藏 引用
EEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart data (Smartdata)
作者: Mohammed, Nwayyin Najat AbdulAzeez, Adnan Mohsin Univ Zakho Dept Comp Sci Zakho Iraq Duhok Poly Tech Univ Duhok Iraq
data mining is a process which discovers patterns and retrieval knowledge in large datasets. Many learning and data mining algorithms rely on distance metrics. Cluster analysis is one of learning algorithms which adop... 详细信息
来源: 评论
Feature selection model based on clustering and ranking in pipeline for microarray data
收藏 引用
Informatics in Medicine Unlocked 2017年 9卷 107-122页
作者: Sahu, Barnali Dehuri, Satchidananda Jagadev, Alok Kumar Department of Computer Science and Engineering Siksha ‘O'Anusandhan University Bhubaneswar 751030 Odisha India Department of Information and Communication Technology Fakir Mohan University Vyasa Vihar Balasore 756019 Odisha India School of Computer Engineering KIIT University Bhubaneswar 751024 Odisha India
Most of the available feature selection techniques in the literature are classifier bound. It means a group of features tied to the performance of a specific classifier as applied in wrapper and hybrid approach. Our o... 详细信息
来源: 评论
A Meta-Review of Feature Selection Techniques in the Context of microarray data  5th
A Meta-Review of Feature Selection Techniques in the Context...
收藏 引用
5th International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO)
作者: Mungloo-Dilmohamud, Zahra Jaufeerally-Fakim, Yasmina Pena-Reyes, Carlos Univ Mauritius Reduit Mauritius Univ Appl Sci Western Switzerland HES SO Sch Business & Engn Vaud HEIG VD Computat Intelligence Computat Biol Grp SIBCI4CB Yverdon Switzerland
microarray technologies produce very large amounts of data that need to be classified for interpretation. Large data coupled with small sample sizes make it challenging for researchers to get useful information and th... 详细信息
来源: 评论
Feature Selection Software Development Using Artificial Bee Colony on DNA microarray data  6
Feature Selection Software Development Using Artificial Bee ...
收藏 引用
International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)
作者: Andaru, Wildan Syarif, Iwan Barakbah, Ali Ridho Elect Engn Polytech Inst Surabaya Informat & Comp Engn Surabaya Indonesia
DNA microarray data is a high-dimensional data that enables the researchers to analyze the expression of many genes in a single reaction quickly and in an efficient manner. Its characteristics such as small sample siz... 详细信息
来源: 评论
Identifying Three-Way Gene Interactions from microarray data Using Kolmogorov-Smirnov and Cross-Match Tests
Identifying Three-Way Gene Interactions from Microarray Data...
收藏 引用
作者: Khadka, Shubhashree University of Arkansas
学位级别:M.S.
Human gene network is much more complex than just pairwise interaction among the genes. Zhang et al. [6] extracted microarray data from International Genomics Consortium (IGC), and presented the detection of three-way... 详细信息
来源: 评论
A global learning with local preservation method for microarray data imputation
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2016年 第0期77卷 76-89页
作者: Chen, Ye Wang, Aiguo Ding, Huitong Que, Xia Li, Yabo An, Ning Jiang, Lili Hefei Univ Technol Sch Comp & Informat Hefei 230009 Peoples R China Hefei Univ Technol Sch Software Hefei 230009 Peoples R China Lanzhou Univ Coll Life Sci Lanzhou 730000 Peoples R China Umea Univ Dept Comp Sci S-90187 Umea Sweden
microarray data suffer from missing values for various reasons, including insufficient resolution, image noise, and experimental errors. Because missing values can hinder downstream analysis steps that require complet... 详细信息
来源: 评论
Pipelining the ranking techniques for microarray data classification: A case study
收藏 引用
APPLIED SOFT COMPUTING 2016年 第0期48卷 298-316页
作者: Dash, Rasmita Misra, Bijan Bihari Siksha O Anusandhan Univ Inst Tech Educ & Res Dept Comp Sc & Informat Technol Bhubaneswar 751030 Odisha India Silicon Inst Technol Dept Comp Sc & Engn Bhubaneswar 751024 Odisha India
Identification of relevant genes from microarray data is an apparent need in many applications. For such identification different ranking techniques with different evaluation criterion are used, which usually assign d... 详细信息
来源: 评论
A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization
收藏 引用
GENOMICS 2016年 第6期107卷 231-238页
作者: Sharbaf, Fatemeh Vafaee Mosafer, Sara Moattar, Mohammad Hossein Imam Reza Int Univ Dept Comp Engn Mashhad Iran Islamic Azad Univ Dept Software Engn Mashhad Branch Mashhad Iran
This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and ... 详细信息
来源: 评论
A centroid-based gene selection method for microarray data classification
收藏 引用
JOURNAL OF THEORETICAL BIOLOGY 2016年 400卷 32-41页
作者: Guo, Shun Guo, Donghui Chen, Lifei Jiang, Qingshan Xiamen Univ Dept Elect Engn Xiamen 361005 Fujian Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518000 Peoples R China Fujian Normal Univ Sch Math & Comp Sci Fuzhou 350117 Fujian Peoples R China
For classification problems based on microarray data, the data typically contains a large number of irrelevant and redundant features. In this paper, a new gene selection method is proposed to choose the best subset o... 详细信息
来源: 评论
Unsupervised Machine Learning Approach for Gene Expression microarray data Using Soft Computing Technique  3rd
Unsupervised Machine Learning Approach for Gene Expression M...
收藏 引用
3rd International Conference on Advanced Computing, Networking, and Informatics (ICACNI)
作者: Rana, Madhurima Vijayeeta, Prachi Kar, Utsav Das, Madhabananda Mishra, B. S. P. KIIT Univ Bhubaneswar Orissa India
Machine learning is a burgeoning technology used for extractions of knowledge from an ocean of data. It has robust binding with optimization and artificial intelligence that delivers theory, methodologies and applicat... 详细信息
来源: 评论