咨询与建议

限定检索结果

文献类型

  • 145 篇 期刊文献
  • 47 篇 会议
  • 2 册 图书

馆藏范围

  • 194 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 90 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 28 篇 电气工程
    • 20 篇 生物医学工程(可授...
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 117 篇 理学
    • 102 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 22 篇 数学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 系统科学
  • 53 篇 医学
    • 22 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 7 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
  • 40 篇 农学
    • 8 篇 作物学
  • 9 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 公共管理
    • 2 篇 农林经济管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 194 篇 microarray data ...
  • 21 篇 feature selectio...
  • 14 篇 clustering
  • 14 篇 bioinformatics
  • 14 篇 gene expression
  • 13 篇 gene selection
  • 13 篇 cancer classific...
  • 10 篇 classification
  • 7 篇 biclustering
  • 6 篇 fuzzy clustering
  • 6 篇 false discovery ...
  • 5 篇 breast cancer
  • 5 篇 data mining
  • 4 篇 differentially e...
  • 4 篇 cancer
  • 4 篇 bidimensional cl...
  • 4 篇 bi-copam
  • 4 篇 gene expression ...
  • 3 篇 gene clustering
  • 3 篇 protein-protein ...

机构

  • 6 篇 yonsei univ dept...
  • 5 篇 city univ hong k...
  • 3 篇 univ sydney sch ...
  • 2 篇 univ tabriz fac ...
  • 2 篇 jozef stefan ins...
  • 2 篇 gachon univ med ...
  • 2 篇 jin wen inst tec...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 national health ...
  • 2 篇 city univ hong k...
  • 2 篇 brunel univ dept...
  • 2 篇 griffith univ sc...
  • 2 篇 indian stat inst...
  • 2 篇 florida int univ...
  • 2 篇 univ alexandria ...
  • 2 篇 nextbio cupertin...
  • 2 篇 cairo univ fac s...
  • 2 篇 indian stat inst...

作者

  • 7 篇 yan hong
  • 5 篇 park sanghyun
  • 4 篇 yoon youngmi
  • 4 篇 maji pradipta
  • 3 篇 shah ekta
  • 2 篇 nandi asoke k.
  • 2 篇 spyrou george
  • 2 篇 fa rui
  • 2 篇 lavrac nada
  • 2 篇 wang doris z.
  • 2 篇 abu-jamous basel
  • 2 篇 bien sangjay
  • 2 篇 verma yogesh kum...
  • 2 篇 trajkovski igor
  • 2 篇 simon richard
  • 2 篇 chen yi-ping pho...
  • 2 篇 jain renu
  • 2 篇 chetty madhu
  • 2 篇 mahfouz mohamed ...
  • 2 篇 li t

语言

  • 184 篇 英文
  • 8 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=microarray data analysis"
194 条 记 录,以下是71-80 订阅
排序:
A variational Bayesian framework for group feature selection
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2013年 第6期4卷 609-619页
作者: Subrahmanya, Niranjan Shin, Yung C. ExxonMobil Res & Engn Co Annandale NJ USA Purdue Univ W Lafayette IN 47907 USA
In many machine learning and pattern analysis applications, grouping of features during model development and the selection of a small number of relevant groups can be useful to improve the interpretability of the lea... 详细信息
来源: 评论
Filtering non-balanced data using an evolutionary approach
收藏 引用
LOGIC JOURNAL OF THE IGPL 2023年 第2期31卷 271-286页
作者: Carballido, Jessica A. Ponzoni, Ignacio Cecchini, Rocio L. Univ Nacl Sur UNS CONICET Inst Comp Sci & EngnDept Comp Sci & Engn San Andres 800 RA-8000 Bahia Blanca Buenos Aires Argentina
Matrices that cannot be handled using conventional clustering, regression or classification methods are often found in every big data research area. In particular, datasets with thousands or millions of rows and less ... 详细信息
来源: 评论
Sparse Manifold Clustering and Embedding to discriminate gene expression profiles of glioblastoma and meningioma tumors
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2013年 第11期43卷 1863-1869页
作者: Garcia-Gomez, Juan M. Gomez-Sanchis, Juan Escandell-Montero, Pablo Fuster-Garcia, Elies Soria-Olivas, Emilio Univ Politecn Valencia Biomed Informat Grp IBIME ITACA Valencia 46022 Spain Univ Valencia Dept Elect Engn Intelligent Data Anal Lab E-46100 Valencia Spain Hosp La Fe IIS Grp Invest Biomed Imagen GIBI230 Valencia Spain
Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In t... 详细信息
来源: 评论
TotalPLS: Local Dimension Reduction for Multicategory microarray data
收藏 引用
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2014年 第1期44卷 125-138页
作者: You, Wenjie Yang, Zijiang Yuan, Mingshun Ji, Guoli Xiamen Univ Dept Automat Xiamen 361005 Fujian Peoples R China York Univ Sch Informat Technol Toronto ON M3J 1P3 Canada Xiamen Univ Innovat Ctr Cell Biol Xiamen 361102 Peoples R China
Dimension reduction is an important topic in data mining, which is widely used in the areas of genetics, medicine, and bioinformatics. We propose a new local dimension reduction algorithm TotalPLS that operates in a u... 详细信息
来源: 评论
Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2008年 第6期32卷 417-425页
作者: Leng, Chenlei Natl Univ Singapore Dept Stat & Appl Probabil Singapore 117546 Singapore
Gene expression data sets hold the promise to provide cancer diagnosis on the molecular level. However, using all the gene profiles for diagnosis may be suboptimal. Detection of the molecular signatures not only reduc... 详细信息
来源: 评论
MapReduce based parallel gene selection method
收藏 引用
APPLIED INTELLIGENCE 2015年 第2期42卷 147-156页
作者: Islam, A. K. M. Tauhidul Jeong, Byeong-Soo Bari, A. T. M. Golam Lim, Chae-Gyun Jeon, Seok-Hee Kyung Hee Univ Dept Comp Engn Seoul South Korea
microarray data analysis has been widely used for extracting relevant biological information from thousands of genes simultaneously expressed in a specific cell. Although many genes are expressed in a sample tissue, m... 详细信息
来源: 评论
Hybrid ant lion mutated ant colony optimizer technique for Leukemia prediction using microarray gene data
收藏 引用
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021年 第2期12卷 2965-2973页
作者: Santhakumar, D. Logeswari, S. CK Coll Engn & Technol Comp Sci Engn Cuddalore Tamil Nadu India Bannari Amman Inst Technol Comp Sci Engn Satyamangalam Tamil Nadu India
The classification of cancers is one of the most vital functions of microarray data analysis. The classification of the gene expression profile is treated as a NP-Hard problem since it is a very demanding job. Compare... 详细信息
来源: 评论
Comparison of Feature Selection Methods for Cross-Laboratory microarray analysis
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013年 第3期10卷 593-604页
作者: Liu, Hsi-Che Peng, Pei-Chen Hsieh, Tzung-Chien Yeh, Ting-Chi Lin, Chih-Jen Chen, Chien-Yu Hou, Jen-Yin Shih, Lee-Yung Liang, Der-Cherng Mackay Mem Hosp Mackay Med Coll New Taipei Taiwan Mackay Mem Hosp Div Pediat Hematol Oncol New Taipei Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei 10764 Taiwan Natl Taiwan Univ Dept Bioind Mech Engn Taipei 10764 Taiwan Chang Gung Mem Hosp Dept Internal Med Div Hematol Oncol Taipei 10591 Taiwan Chang Gung Univ Sch Med Tao Yuan Taiwan
The amount of gene expression data of microarray has grown exponentially. To apply them for extensiVe studies, integrated analysis of cross-laboratory (cross-lab) data'becomes a trend, and thus, choosing an approp... 详细信息
来源: 评论
Gene expression and protein-protein interaction data for identification of colon cancer related genes using f-information measures
收藏 引用
NATURAL COMPUTING 2016年 第3期15卷 449-463页
作者: Paul, Sushmita Maji, Pradipta Univ Erlangen Nurnberg Dept Dermatol Lab Syst Tumor Immunol Erlangen Germany Indian Stat Inst Biomed Imaging & Bioinformat Lab Machine Intelligence Unit Kolkata 700108 India
One of the most important and challenging problems in functional genomics is how to select the disease genes. In this regard, the paper presents a new computational method to identify disease genes. It judiciously int... 详细信息
来源: 评论
Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm
收藏 引用
INTELLIGENT data analysis 2019年 第1期23卷 241-253页
作者: Ventura-Molina, Elias Alarcon-Paredes, Antonio Aldape-Perez, Mario Yanez-Marquez, Cornelio Adolfo Alonso, Gustavo Inst Politecn Nacl Ctr Invest Computac Av Juan de Dios Batiz Ciudad De Mexico 07738 Mexico Univ Autonoma Guerrero Fac Ingn Av Lazaro Cardenas S-NCiudad Univ Zona Sur Chilpancingo Guerrero 39087 Mexico Inst Politecn Nacl Ctr Innovac & Desarrollo Tecnol Computo Av Juan de Dios Batiz Ciudad De Mexico 07700 Mexico
Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties ... 详细信息
来源: 评论