咨询与建议

限定检索结果

文献类型

  • 145 篇 期刊文献
  • 47 篇 会议
  • 2 册 图书

馆藏范围

  • 194 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 90 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 28 篇 电气工程
    • 20 篇 生物医学工程(可授...
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 117 篇 理学
    • 102 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 22 篇 数学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 系统科学
  • 53 篇 医学
    • 22 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 7 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
  • 40 篇 农学
    • 8 篇 作物学
  • 9 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 公共管理
    • 2 篇 农林经济管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 194 篇 microarray data ...
  • 21 篇 feature selectio...
  • 14 篇 clustering
  • 14 篇 bioinformatics
  • 14 篇 gene expression
  • 13 篇 gene selection
  • 13 篇 cancer classific...
  • 10 篇 classification
  • 7 篇 biclustering
  • 6 篇 fuzzy clustering
  • 6 篇 false discovery ...
  • 5 篇 breast cancer
  • 5 篇 data mining
  • 4 篇 differentially e...
  • 4 篇 cancer
  • 4 篇 bidimensional cl...
  • 4 篇 bi-copam
  • 4 篇 gene expression ...
  • 3 篇 gene clustering
  • 3 篇 protein-protein ...

机构

  • 6 篇 yonsei univ dept...
  • 5 篇 city univ hong k...
  • 3 篇 univ sydney sch ...
  • 2 篇 univ tabriz fac ...
  • 2 篇 jozef stefan ins...
  • 2 篇 gachon univ med ...
  • 2 篇 jin wen inst tec...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 national health ...
  • 2 篇 city univ hong k...
  • 2 篇 brunel univ dept...
  • 2 篇 griffith univ sc...
  • 2 篇 indian stat inst...
  • 2 篇 florida int univ...
  • 2 篇 univ alexandria ...
  • 2 篇 nextbio cupertin...
  • 2 篇 cairo univ fac s...
  • 2 篇 indian stat inst...

作者

  • 7 篇 yan hong
  • 5 篇 park sanghyun
  • 4 篇 yoon youngmi
  • 4 篇 maji pradipta
  • 3 篇 shah ekta
  • 2 篇 nandi asoke k.
  • 2 篇 spyrou george
  • 2 篇 fa rui
  • 2 篇 lavrac nada
  • 2 篇 wang doris z.
  • 2 篇 abu-jamous basel
  • 2 篇 bien sangjay
  • 2 篇 verma yogesh kum...
  • 2 篇 trajkovski igor
  • 2 篇 simon richard
  • 2 篇 chen yi-ping pho...
  • 2 篇 jain renu
  • 2 篇 chetty madhu
  • 2 篇 mahfouz mohamed ...
  • 2 篇 li t

语言

  • 184 篇 英文
  • 8 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=microarray data analysis"
194 条 记 录,以下是81-90 订阅
排序:
Speeding up the discovery of combinations of differentially expressed genes for disease prediction and classification
收藏 引用
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019年 170卷 69-80页
作者: Khamesipour, Alireza Kagaris, Dimitri Southern Illinois Univ ECE Dept Carbondale IL 62901 USA
Background and objective: Finding combinations (i.e., pairs, or more generally, q-tuples with q >= 2) of genes whose behavior as a group differs significantly between two classes has received a lot of attention in ... 详细信息
来源: 评论
Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory
收藏 引用
BMC BIOINFORMATICS 2016年 第Sup1期17卷 13-26页
作者: Huang, Chien-Hung Chang, Peter Mu-Hsin Hsu, Chia-Wei Huang, Chi-Ying F. Ng, Ka-Lok Natl Formosa Univ Dept Comp Sci & Informat Engn Huwei 63205 Taiwan Taipei Vet Gen Hosp Dept Med Div Hematol & Oncol Taipei 112 Taiwan Natl Yang Ming Univ Fac Med Taipei 112 Taiwan Natl Yang Ming Univ Inst Biopharmaceut Sci Taipei 112 Taiwan Asia Univ Dept Bioinformat & Med Engn Taichung 41354 Taiwan China Med Univ China Med Univ Hosp Dept Med Res Taichung 40402 Taiwan
Background: Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the ... 详细信息
来源: 评论
Natural computing methods in bioinformatics: A survey
收藏 引用
INFORMATION FUSION 2009年 第3期10卷 211-216页
作者: Masulli, Francesco Mitra, Sushmita Univ Genoa Dept Comp & Informat Sci I-16146 Genoa Italy Temple Univ Ctr Biotechnol Philadelphia PA 19122 USA Indian Stat Inst Machine Intelligence Unit Kolkata 700108 India
Often data analysis problems in Bioinformatics concern the fusion of multisensor outputs or the fusion of multisource information, where one must integrate different kinds of biological data. Natural computing provide... 详细信息
来源: 评论
A recursive network approach can identify constitutive regulatory circuits in gene expression data
收藏 引用
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 2005年 第348期348卷 349-370页
作者: Blasi, MF Casorelli, I Colosimo, A Blasi, FS Bignami, M Giuliani, A Ist Super Sanita Dept Environm & Primary Prevent I-00161 Rome Italy Univ Roma La Sapienza Dept Human Physiol & Pharmacol Rome Italy Univ Roma Tor Vergata Dept Math I-00173 Rome Italy
The activity of the cell is often coordinated by the organisation of proteins into regulatory circuits that share a common function. Genome-wide expression profiles might contain important information on these circuit... 详细信息
来源: 评论
Inferring Large-Scale Gene Regulatory Networks Using a Randomized Algorithm Based on Singular Value Decomposition
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019年 第6期16卷 1997-2008页
作者: Fan, Anjing Wang, Haitao Xiang, Hua Zou, Xiufen Wuhan Univ Sch Math & Stat Wuhan 430072 Peoples R China
Reconstructing large-scale gene regulatory networks (GRNs) is a challenging problem in the field of computational biology. Various methods for inferring GRNs have been developed, but they fail to accurately infer GRNs... 详细信息
来源: 评论
Biclustering algorithms for biological data analysis: A survey
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2004年 第1期1卷 24-45页
作者: Madeira, SC Oliveira, AL Univ Beira Interior P-6200001 Covilha Portugal INESC ID Lisbon Portugal Univ Tecn Lisboa Inst Super Tecn P-1000029 Lisbon Portugal
A large number of clustering approaches have been proposed for the analysis of gene expression data obtained from microarray experiments. However, the results from the application of standard clustering methods to gen... 详细信息
来源: 评论
Cancer Classification from Gene Expression data by NPPC Ensemble
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011年 第3期8卷 659-671页
作者: Ghorai, Santanu Mukherjee, Anirban Sengupta, Sanghamitra Dutta, Pranab K. MCKV Inst Engn Dept Elect & Commun Engn Howrah 711204 W Bengal India Indian Inst Technol Dept Elect Engn Kharagpur 721302 W Bengal India Univ Calcutta Dept Biochem Kolkata 700019 W Bengal India
The most important application of microarray in gene expression analysis is to classify the unknown tissue samples according to their gene expression levels with the help of known sample expression levels. In this pap... 详细信息
来源: 评论
Advances in metaheuristics for gene selection and classification of microarray data
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2010年 第1期11卷 127-141页
作者: Duval, Beatrice Hao, Jin-Kao Univ Angers F-49045 Angers 01 France
Gene selection aims at identifying a (small) subset of informative genes from the initial data in order to obtain high predictive accuracy for classification. Gene selection can be considered as a combinatorial search... 详细信息
来源: 评论
Some statistics in bioinformatics: The fifth Armitage Lecture
收藏 引用
STATISTICS IN MEDICINE 2009年 第23期28卷 2833-2856页
作者: Solomon, Patricia J. Univ Adelaide Sch Math Sci Adelaide SA 5005 Australia
The spirit and content of the 2007 Armitage Lecture are presented in this paper. To begin, two areas of Peter Armitage's early work are distinguished: his pioneering research on sequential methods intended for use... 详细信息
来源: 评论
Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts
收藏 引用
GENOMICS 2017年 第2期109卷 91-107页
作者: Dashtban, M. Balafar, Mohammadali Univ Tabriz Fac Elect & Comp Engn Dept Comp Engn Tabriz Iran
Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms a... 详细信息
来源: 评论