咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 理学
    • 10 篇 数学
    • 1 篇 物理学
    • 1 篇 系统科学
  • 11 篇 工学
    • 7 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 17 篇 mirror descent a...
  • 3 篇 distributed opti...
  • 3 篇 stochastic appro...
  • 3 篇 two-armed bandit...
  • 2 篇 minimax approach
  • 2 篇 constrained opti...
  • 2 篇 batch processing
  • 2 篇 stochastic progr...
  • 2 篇 almost sure conv...
  • 2 篇 exp3
  • 2 篇 multi-agent syst...
  • 2 篇 monte carlo samp...
  • 2 篇 uniform quantize...
  • 2 篇 sample average a...
  • 1 篇 large deviations...
  • 1 篇 parallel process...
  • 1 篇 two-stage robust...
  • 1 篇 reinforcement le...
  • 1 篇 distributed onli...
  • 1 篇 concentration in...

机构

  • 2 篇 georgia inst tec...
  • 2 篇 nanjing univ sci...
  • 2 篇 indian inst tech...
  • 1 篇 city univ hong k...
  • 1 篇 univ toronto dep...
  • 1 篇 yaroslav the wis...
  • 1 篇 royal inst techn...
  • 1 篇 vector inst on
  • 1 篇 yaroslav the wis...
  • 1 篇 microsoft res ny...
  • 1 篇 tokyo univ agr &...
  • 1 篇 russian acad sci...
  • 1 篇 tokyo univ agr &...
  • 1 篇 tokyo univ agr &...
  • 1 篇 univ grenoble 1 ...
  • 1 篇 school of automa...
  • 1 篇 univ calif davis...
  • 1 篇 univ florida gai...
  • 1 篇 yaroslav the wis...
  • 1 篇 anhui normal uni...

作者

  • 2 篇 xiong menghui
  • 2 篇 yano shiro
  • 2 篇 mahindrakar arun...
  • 2 篇 kondo toshiyuki
  • 2 篇 zhang baoyong
  • 2 篇 paul anik kumar
  • 2 篇 kalaimani rachel...
  • 2 篇 yuan deming
  • 2 篇 miyashita megumi
  • 2 篇 shiyan d. n.
  • 1 篇 zhang ning
  • 1 篇 lan g.
  • 1 篇 fang chang
  • 1 篇 duchi john c.
  • 1 篇 nemirovski a.
  • 1 篇 kolnogorov alexa...
  • 1 篇 ho daniel w. c.
  • 1 篇 kolnogorov a. v
  • 1 篇 nazin a. v
  • 1 篇 juditsky a.

语言

  • 15 篇 英文
  • 2 篇 其他
检索条件"主题词=mirror descent algorithm"
17 条 记 录,以下是1-10 订阅
排序:
Two-Armed Bandit Problem and Batch Version of the mirror descent algorithm
收藏 引用
AUTOMATION AND REMOTE CONTROL 2022年 第8期83卷 1288-1307页
作者: Kolnogorov, A., V Nazin, A., V Shiyan, D. N. Yaroslav The Wise Novgorod State Univ Novgorod 173003 Russia Russian Acad Sci Trapeznikov Inst Control Sci Moscow 117997 Russia
We consider the minimax setup for the two-armed bandit problem as applied to data processing if there are two alternative processing methods with different a priori unknown efficiencies. One should determine the most ... 详细信息
来源: 评论
Robust Analysis of Almost Sure Convergence of Zeroth-Order mirror descent algorithm
收藏 引用
IEEE CONTROL SYSTEMS LETTERS 2023年 7卷 1933-1938页
作者: Paul, Anik Kumar Mahindrakar, Arun D. Kalaimani, Rachel K. Indian Inst Technol Madras Dept Elect Engn Chennai 600036 India
This letter presents an almost sure convergence of the zeroth-order mirror descent (ZOMD) algorithm. The algorithm admits non-smooth convex functions and a biased oracle which only provides noisy function value at any... 详细信息
来源: 评论
One-Armed Bandit Problem and the mirror descent algorithm
收藏 引用
DOKLADY MATHEMATICS 2024年 第SUPPL2期110卷 S399-S408页
作者: Shiyan, D. N. Yaroslav The Wise Novgorod State Univ Veliky Novgorod 173003 Novgorod Oblast Russia
The application of the mirror descent algorithm (MDA) in the one-armed bandit problem in the minimax setting in relation to data processing has been considered. This problem has also been known as a game with nature, ... 详细信息
来源: 评论
Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic mirror descent algorithm
收藏 引用
IEEE CONTROL SYSTEMS LETTERS 2024年 8卷 2397-2402页
作者: Paul, Anik Kumar Mahindrakar, Arun D. Kalaimani, Rachel K. Indian Inst Technol Madras Dept Elect Engn Chennai 600036 India
This letter investigates the convergence and concentration properties of the Stochastic mirror descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorith... 详细信息
来源: 评论
Parallel Version of the mirror descent algorithm for the Two-Armed Bandit Problem  3
Parallel Version of the Mirror Descent Algorithm for the Two...
收藏 引用
3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)
作者: Kolnogorov, Alexander Shiyan, Dmitry Yaroslav The Wise Novgorod State Univ B St Petersburgskaya Str 41 Velikiy Novgorod 173003 Russia
We propose some modified versions of the mirror descent algorithm for the two-armed bandit problem which allow parallel processing of data. Using Monte-Carlo simulations, we estimate the minimax risk for this versions.
来源: 评论
Reinforcement learning with constraint based on mirror descent algorithm
收藏 引用
RESULTS IN CONTROL AND OPTIMIZATION 2021年 4卷
作者: Miyashita, Megumi Kondo, Toshiyuki Yano, Shiro Tokyo Univ Agr & Technol Grad Sch Engn Dept Elect & Informat Engn 2-24-16 Naka Cho Koganei Tokyo Japan Tokyo Univ Agr & Technol Inst Engn Div Adv Informat Technol & Comp Sci 2-24-16 Naka Cho Koganei Tokyo Japan
An important issue in reinforcement learning is to make the agent avoid the dangers and risks during the task such as physical collisions. We propose the reinforcement learning algorithm based on the Comirror algorith... 详细信息
来源: 评论
ERGODIC mirror descent
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2012年 第4期22卷 1549-1578页
作者: Duchi, John C. Agarwal, Alekh Johansson, Mikael Jordan, Michael I. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Microsoft Res New York NY USA Royal Inst Technol KTH Sch Elect Engn Stockholm Sweden
We generalize stochastic subgradient descent methods to situations in which we do not receive independent samples from the distribution over which we optimize, instead receiving samples coupled over time. We show that... 详细信息
来源: 评论
Validation analysis of mirror descent stochastic approximation method
收藏 引用
MATHEMATICAL PROGRAMMING 2012年 第2期134卷 425-458页
作者: Lan, Guanghui Nemirovski, Arkadi Shapiro, Alexander Univ Florida Gainesville FL 32611 USA Georgia Inst Technol Atlanta GA 30332 USA
The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing stochastic approximation (SA) type algorithms. To this end we show that while running a mirror descent Stoc... 详细信息
来源: 评论
mirror descent Strikes Again: Optimal Stochastic Convex Optimization under Infinite Noise Variance  35
Mirror Descent Strikes Again: Optimal Stochastic Convex Opti...
收藏 引用
35th Conference on Learning Theory (COLT)
作者: Vural, Nuri Mert Yu, Lu Balasubramanian, Krishnakumar Volgushev, Stanislav Erdogdu, Murat A. Univ Toronto Dept Comp Sci Toronto ON Canada Vector Inst Toronto ON Canada Univ Toronto Dept Stat Sci Toronto ON Canada Univ Calif Davis Dept Stat Davis CA 95616 USA
We study stochastic convex optimization under infinite noise variance. Specifically, when the stochastic gradient is unbiased and has uniformly bounded (1+ k)-th moment, for some k is an element of (0;1], we quantify ... 详细信息
来源: 评论
Quantizer-based distributed mirror descent for multi-agent convex optimization  33
Quantizer-based distributed mirror descent for multi-agent c...
收藏 引用
33rd Chinese Control and Decision Conference (CCDC)
作者: Xiong, Menghui Zhang, Baoyong Yuan, Deming Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Jiangsu Peoples R China
This paper is concerned with the constrained distributed multi-agent convex optimization problem over a time-varying network. We assume that the bit rate of the considered communication is limited, such that a uniform... 详细信息
来源: 评论