咨询与建议

限定检索结果

文献类型

  • 8 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 12 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 软件工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 5 篇 理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 数学
    • 2 篇 生物学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 15 篇 missing-not-at-r...
  • 4 篇 implicit feedbac...
  • 4 篇 recommender syst...
  • 2 篇 matrix factoriza...
  • 2 篇 positive-unlabel...
  • 2 篇 bias
  • 2 篇 inverse propensi...
  • 2 篇 sample selection...
  • 2 篇 inverse propensi...
  • 2 篇 data models
  • 1 篇 randomized contr...
  • 1 篇 evaluation mecha...
  • 1 篇 dropout
  • 1 篇 collaborative fi...
  • 1 篇 support vector m...
  • 1 篇 local perturbati...
  • 1 篇 mars
  • 1 篇 task analysis
  • 1 篇 sparse matrices
  • 1 篇 generative model

机构

  • 3 篇 tokyo inst techn...
  • 1 篇 jilin univ dept ...
  • 1 篇 curtin univ sch ...
  • 1 篇 sungkyunkwan uni...
  • 1 篇 carnegie mellon ...
  • 1 篇 univ bristol bri...
  • 1 篇 tencent peoples ...
  • 1 篇 univ bristol bri...
  • 1 篇 sungkyunkwan uni...
  • 1 篇 calif dept publ ...
  • 1 篇 univ new south w...
  • 1 篇 inst publ hlth o...
  • 1 篇 univ waterloo de...
  • 1 篇 smn corp fukuoka
  • 1 篇 beihang univ ins...
  • 1 篇 univ arkansas de...
  • 1 篇 univ technol syd...
  • 1 篇 beihang univ sch...
  • 1 篇 univ guelph dept...
  • 1 篇 chinese acad sci...

作者

  • 3 篇 saito yuta
  • 2 篇 wu xintao
  • 2 篇 mai huy
  • 1 篇 shirali ali
  • 1 篇 yaginuma suguru
  • 1 篇 du wei
  • 1 篇 nakata kazuhide
  • 1 篇 wang xiangmeng
  • 1 篇 xu yuanbo
  • 1 篇 wang liang
  • 1 篇 wu jie
  • 1 篇 luo yingtao
  • 1 篇 wang zhichao
  • 1 篇 wang en
  • 1 篇 lee jae-woong
  • 1 篇 li qian
  • 1 篇 zhu siwen
  • 1 篇 jin hong
  • 1 篇 li chaozhuo
  • 1 篇 rong jiangpeng

语言

  • 14 篇 英文
  • 1 篇 其他
检索条件"主题词=missing-not-at-random"
15 条 记 录,以下是1-10 订阅
排序:
RMT-Net: Reject-Aware Multi-Task Network for Modeling missing-not-at-random Data in Financial Credit Scoring
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第7期35卷 7427-7439页
作者: Liu, Qiang Luo, Yingtao Wu, Shu Zhang, Zhen Yue, Xiangnan Jin, Hong Wang, Liang Chinese Acad Sci CASIA Inst Automat Ctr Res Intelligent Percept & Comp CRIPAC Natl Lab Pattern Recognit NLPR Beijing Peoples R China Carnegie Mellon Univ H John Heinz III Sch Informat Syst & Management Pittsburgh PA 15213 USA Ant Grp Hangzhou 310000 Peoples R China
In financial credit scoring, loan applications may be approved or rejected. We can only observe default/non-default labels for approved samples but have no observations for rejected samples, which leads to missing-not... 详细信息
来源: 评论
A Robust Classifier under missing-not-at-random Sample Selection Bias
A Robust Classifier under Missing-Not-at-Random Sample Selec...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Mai, Huy Huang, Wen Du, Wei Wu, Xintao University of Arkansas Department of Electrical Engineering and Computer Science FayettevilleAR United States
The shift between the training and testing distributions is commonly due to sample selection bias, a type of bias caused by non-random sampling of examples to be included in the training set. Although there are many a... 详细信息
来源: 评论
Trial arm outcome variance difference after dropout as an indicator of missing-not-at-random bias in randomized controlled trials
收藏 引用
BIOMETRICAL JOURNAL 2023年 第8期65卷 e2200116页
作者: Hazewinkel, Audinga-Dea Tilling, Kate Wade, Kaitlin H. Palmer, Tom Univ Bristol Bristol Med Sch Populat Hlth Sci Bristol England Univ Bristol Bristol Med Sch Med Res Council Integrat Epidemiol Unit Bristol England Univ Bristol Bristol Med Sch Populat Hlth Sci Audinga Dea Hazewinkel Oakfield House Oakfield G Bristol BS8 2BN England
randomized controlled trials (RCTs) are vulnerable to bias from missing data. When outcomes are missing not at random (MNAR), estimates from complete case analysis (CCA) and multiple imputation (MI) may be biased. The... 详细信息
来源: 评论
Learning Without missing-At-random Prior Propensity-A Generative Approach for Recommender Systems
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第2期37卷 754-765页
作者: Xu, Yuanbo Zhuang, Fuzhen Wang, En Li, Chaozhuo Wu, Jie Jilin Univ Dept Comp Sci & Technol Changchun 130012 Peoples R China Beihang Univ Inst Artificial Intelligence Beijing 100191 Peoples R China Beihang Univ Sch Comp Sci SKLSDE Beijing 100191 Peoples R China Beijing Univ Posts & Telecommun Key Lab Trustworthy Distributed Comp & Serv MoE Beijing 100876 Peoples R China Temple Univ Dept Comp & Informat Sci Philadelphia PA 19122 USA
In recommender systems, it is frequently presumed that missing ratings adhere to a missing at random (MAR) mechanism, implying the absence of ratings is independent of their potential values. However, this assumption ... 详细信息
来源: 评论
Asymmetric Tri-training for Debiasing missing-not-at-random Explicit Feedback  20
Asymmetric Tri-training for Debiasing Missing-Not-At-Random ...
收藏 引用
43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Saito, Yuta Tokyo Inst Technol Tokyo Japan
In most real-world recommender systems, the observed rating data are subject to selection bias, and the data are thus missing-not-at-random. Developing a method to facilitate the learning of a recommender with biased ... 详细信息
来源: 评论
Unbiased Recommender Learning from missing-not-at-random Implicit Feedback  20
Unbiased Recommender Learning from Missing-Not-At-Random Imp...
收藏 引用
13th Annual ACM International Conference on Web Search and Data Mining (WSDM)
作者: Saito, Yuta Yaginuma, Suguru Nishino, Yuta Sakata, Hayato Nakata, Kazuhide Tokyo Inst Technol Tokyo Japan SMN Corp Fukuoka Japan
Recommender systems widely use implicit feedback such as click data because of its general availability. Although the presence of clicks signals the users' preference to some extent, the lack of such clicks does n... 详细信息
来源: 评论
Analysis of multiple-variable missing-not-at-random survey data for child lead surveillance using NHANES
收藏 引用
STATISTICS IN MEDICINE 2016年 第29期35卷 5417-5429页
作者: Roberts, Eric M. English, Paul B. Inst Publ Hlth Oakland CA 94607 USA Calif Dept Publ Hlth 850 Marina Bay PkwyBldg P-3 Richmond CA 94804 USA
Background - Although ongoing, multi-topic surveys form the basis of public health surveillance in many countries, their utility for specific subject matter areas can be limited by high proportions of missing data. Fo... 详细信息
来源: 评论
On Prediction Feature Assignment in the Heckman Selection Model
On Prediction Feature Assignment in the Heckman Selection Mo...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Mai, Huy Wu, Xintao Univ Arkansas Dept Elect Engn & Comp Sci Fayetteville AR 72701 USA
Under missing-not-at-random (MNAR) sample selection bias, the performance of a prediction model is often degraded. This paper focuses on one classic instance of MNAR sample selection bias where a subset of samples hav... 详细信息
来源: 评论
Unbiased Pairwise Learning from Implicit Feedback for Recommender Systems without Biased Variance Control  23
Unbiased Pairwise Learning from Implicit Feedback for Recomm...
收藏 引用
46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Ren, Yi Tang, Hongyan Rong, Jiangpeng Zhu, Siwen Tencent Beijing Peoples R China
Generally speaking, the model training for recommender systems can be based on two types of data, namely explicit feedback and implicit feedback. Moreover, because of its general availability, we see wide adoption of ... 详细信息
来源: 评论
Sequential Nature of Recommender Systems Disrupts the Evaluation Process  1
收藏 引用
3rd International Workshop on Algorithmic Bias in Search and Recommendation (BIAS) held as part of the 43rd European Conference on Information Retrieval (ECIR)
作者: Shirali, Ali Univ Calif Berkeley Berkeley CA 94720 USA
Datasets are often generated in a sequential manner, where the previous samples and intermediate decisions or interventions affect subsequent samples. This is especially prominent in cases where there are significant ... 详细信息
来源: 评论