咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 support vector m...
  • 1 篇 biomarker
  • 1 篇 breast cancer
  • 1 篇 vectors
  • 1 篇 modified compact...
  • 1 篇 genetic algorith...
  • 1 篇 feature extracti...
  • 1 篇 machine learning
  • 1 篇 gene expression
  • 1 篇 pipelines
  • 1 篇 feature selectio...
  • 1 篇 accuracy
  • 1 篇 machine learning...
  • 1 篇 lasso

机构

  • 1 篇 siksha o anusand...
  • 1 篇 siksha o anusand...
  • 1 篇 siksha o anusand...

作者

  • 1 篇 ghosh nimisha
  • 1 篇 paul rourab
  • 1 篇 kumar mridha san...

语言

  • 1 篇 英文
检索条件"主题词=modified compact genetic algorithm"
1 条 记 录,以下是1-10 订阅
排序:
LASSO-mCGA: Machine Learning and modified compact genetic algorithm-Based Biomarker Selection for Breast Cancer Subtype Classification
收藏 引用
IEEE ACCESS 2025年 13卷 17673-17682页
作者: Ghosh, Nimisha Kumar Mridha, Sankar Paul, Rourab Siksha O Anusandhan Ctr Internet Things Dept Comp Sci & Engn Bhubaneswar 751030 India Siksha O Anusandhan Dept Comp Sci & Informat Technol Bhubaneswar 751030 India Siksha O Anusandhan Dept Comp Sci & Engn Bhubaneswar 751030 India
Breast cancer is the most common cancer type among females and is one of the leading causes of death worldwide. Being a heterogeneous disease, subtyping breast cancer plays a vital role in its treatment. In this regar... 详细信息
来源: 评论