咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 image fusion
  • 1 篇 multi-focus
  • 1 篇 pyramid attentio...
  • 1 篇 multi-feature in...
  • 1 篇 feature aggregat...

机构

  • 1 篇 college of compu...
  • 1 篇 college of compu...
  • 1 篇 school of artifi...

作者

  • 1 篇 tian mingjie
  • 1 篇 wang zeyu
  • 1 篇 zhao libo
  • 1 篇 huang bo
  • 1 篇 zhang xiaoli

语言

  • 1 篇 英文
检索条件"主题词=multi-feature input spaces"
1 条 记 录,以下是1-10 订阅
排序:
MFANet: multi-feature Aggregation Network for multi-focus Image Fusion
MFANet: Multi-Feature Aggregation Network for Multi-focus Im...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhao, Libo Zhang, Xiaoli Huang, Bo Tian, Mingjie Wang, Zeyu College of Computer Science and Technology Jilin University Changchun130012 China School of Artificial Intelligence Jilin University Changchun130012 China College of Computer Science and Engineering Dalian Minzu University Dalian116600 China
Existing deep learning-based multi-focus Image Fusion (MFIF) methods often rely on loss functions derived from linear combinations of image quality metrics, leading to complexities in training and only marginal improv... 详细信息
来源: 评论