咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 multi-instance l...
  • 1 篇 machine learning
  • 1 篇 gaussian process...
  • 1 篇 multi-instance p...
  • 1 篇 partial-label le...

机构

  • 1 篇 school of comput...
  • 1 篇 school of inform...
  • 1 篇 key laboratory o...

作者

  • 1 篇 min-ling zhang
  • 1 篇 weijia zhang
  • 1 篇 wei tang

语言

  • 1 篇 英文
检索条件"主题词=multi-instance partial-label learning"
1 条 记 录,以下是1-10 订阅
排序:
multi-instance partial-label learning: towards exploiting dual inexact supervision
收藏 引用
Science China(Information Sciences) 2024年 第3期67卷 48-61页
作者: Wei TANG Weijia ZHANG Min-Ling ZHANG School of Computer Science and Engineering Southeast University Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education School of Information and Physical Sciences The University of Newcastle
Weakly supervised machine learning algorithms are able to learn from ambiguous samples or labels, e.g., multi-instance learning or partial-label learning. However, in some real-world tasks, each training sample is ass... 详细信息
来源: 评论