Encrypted network traffic classification has become a critical task with the widespread adoption of protocols such as HTTPS and QUIC. Deep learning-based methods have proven to be effective in identifying traffic patt...
详细信息
Encrypted network traffic classification has become a critical task with the widespread adoption of protocols such as HTTPS and QUIC. Deep learning-based methods have proven to be effective in identifying traffic patterns, even within encrypted data streams. However, these methods face significant challenges when confronted with new applications that were not part of the original training set. To address this issue, knowledge transfer from existing models is often employed to accommodate novel applications. As the complexity of network traffic increases, particularly at higher protocol layers, the transferability of learned features diminishes due to domain discrepancies. Recent studies have explored Deep Adaptation Networks (DAN) as a solution, which extends deep convolutional neural networks to better adapt to target domains by mitigating these discrepancies. Despite its potential, the computational complexity of discrepancy metrics, such as maximummeandiscrepancy, limits DAN's scalability, especially when applied to large datasets. In this paper, we propose a novel DAN architecture that incorporates smoothcharacteristicfunctions (SCFs), specifically SCF-unNorm (Unnormalized SCF) and SCF-pInverse (Pseudo-inverse SCF). These functions are designed to enhance feature transferability in task-specific layers, effectively addressing the limitations posed by domain discrepancies and computational complexity. The proposed mechanism provides a means to efficiently handle situations with limited labeled data or entirely unlabeled data for new applications. The aim is to limit the target error by incorporating a domain discrepancy between the source and target distributions along with the source error. Two statistics classes, SCF-unNorm and SCF-pInverse, are used to minimize this domain discrepancy in traffic classification. The experimental results demonstrate that our proposed mechanism outperforms existing benchmarks in terms of accuracy, enabling real-time traffic c
暂无评论