咨询与建议

限定检索结果

文献类型

  • 198 篇 期刊文献
  • 122 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 297 篇 工学
    • 224 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 29 篇 软件工程
    • 20 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 动力工程及工程热...
    • 11 篇 石油与天然气工程
    • 9 篇 水利工程
    • 7 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 63 篇 理学
    • 34 篇 数学
    • 17 篇 生物学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 62 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 4 篇 农学
    • 2 篇 作物学
  • 3 篇 医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 321 篇 multi-objective ...
  • 26 篇 multi-objective ...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary alg...
  • 11 篇 nsga-ii
  • 10 篇 many-objective o...
  • 8 篇 optimization
  • 8 篇 evolutionary com...
  • 7 篇 fuzzy rule-based...
  • 7 篇 search-based sof...
  • 7 篇 pareto front
  • 7 篇 differential evo...
  • 6 篇 combinatorial op...
  • 6 篇 scheduling
  • 5 篇 neural architect...
  • 5 篇 data mining
  • 5 篇 parallel and dis...
  • 5 篇 moea/d
  • 5 篇 feature selectio...
  • 5 篇 artificial neura...

机构

  • 5 篇 hosei univ fac c...
  • 4 篇 univ pisa dipart...
  • 4 篇 tokai univ sch i...
  • 3 篇 hosei univ grad ...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ cordoba dep...
  • 3 篇 univ granada dep...
  • 2 篇 amirkabir univ t...
  • 2 篇 ort braude coll ...
  • 2 篇 univ south austr...
  • 2 篇 hunan univ sch c...
  • 2 篇 univ jaen dept c...
  • 2 篇 cyber dyne srl v...
  • 2 篇 xidian univ sch ...
  • 2 篇 royal univ bhuta...
  • 2 篇 delft univ techn...
  • 2 篇 basque res & tec...
  • 2 篇 univ basque coun...
  • 2 篇 nanjing univ sta...
  • 2 篇 east china univ ...

作者

  • 10 篇 marcelloni franc...
  • 8 篇 lazzerini beatri...
  • 6 篇 jimenez fernando
  • 6 篇 sato yuji
  • 6 篇 sanchez gracia
  • 5 篇 qian chao
  • 5 篇 ducange pietro
  • 5 篇 coello coello ca...
  • 5 篇 dufo-lopez rodol...
  • 4 篇 yao xin
  • 4 篇 liu dan-xuan
  • 4 篇 gastelum chavira...
  • 4 篇 guo jianmei
  • 4 篇 zapotecas-martin...
  • 4 篇 antonelli michel...
  • 4 篇 leyva lopez juan...
  • 4 篇 marquez-vega lui...
  • 4 篇 palma jose
  • 4 篇 miyakawa minami
  • 4 篇 shi kai

语言

  • 305 篇 英文
  • 16 篇 其他
检索条件"主题词=multi-objective evolutionary algorithms"
321 条 记 录,以下是151-160 订阅
排序:
Many-objective Optimization Using Taxi-Cab Surface evolutionary Algorithm
Many-Objective Optimization Using Taxi-Cab Surface Evolution...
收藏 引用
7th International Conference on evolutionary multi-Criterion Optimization (EMO)
作者: Moen, Hans J. F. Hansen, Nikolai B. Hovland, Harald Torresen, Jim Norwegian Def Res Estab Informat Management Div Oslo Norway Univ Oslo Dept Informat N-0316 Oslo Norway Univ Oslo Dept Math N-0316 Oslo Norway
Optimization of problems spanning more than three objectives, called many-objective optimization, is often hard to achieve using modern algorithm design and currently available computational resources. In this paper a... 详细信息
来源: 评论
A New evolutionary Algorithm for Extracting a Reduced Set of Interesting Association Rules  1
收藏 引用
22nd International Conference on Neural Information Processing (ICONIP)
作者: Kabir, Mir Md. Jahangir Xu, Shuxiang Kang, Byeong Ho Zhao, Zongyuan Univ Tasmania Sch Engn Hobart Tas Australia Univ Tasmania ICT Hobart Tas Australia
Data mining techniques involve extracting useful, novel and interesting patterns from large data sets. Traditional association rule mining algorithms generate a huge number of unnecessary rules because of using suppor... 详细信息
来源: 评论
Clustering Based Parallel Many-objective evolutionary algorithms Using the Shape of the objective Vectors  8
Clustering Based Parallel Many-Objective Evolutionary Algori...
收藏 引用
8th International Conference on evolutionary multi-Criterion Optimization (EMO)
作者: von Luecken, Christian Brizuela, Carlos Baran, Benjamin Univ Nacl Asuncion Fac Politecn San Lorenzo Paraguay CICESE Res Ctr Ensenada Baja California Mexico
multi-objective evolutionary algorithms (MOEA) are used to solve complex multi-objective problems. As the number of objectives increases, Pareto-based MOEAs are unable to maintain the same effectiveness showed for two... 详细信息
来源: 评论
Bi-MOCK: A multi-objective evolutionary Algorithm for Bi-clustering with Automatic Determination of the Number of Bi-clusters  24th
Bi-MOCK: A Multi-objective Evolutionary Algorithm for Bi-clu...
收藏 引用
24th International Conference on Neural Information Processing (ICONIP)
作者: Bousselmi, Meriem Bechikh, Slim Hung, Chih-Cheng Ben Said, Lamjed Univ Tunis Comp Sci Dept SMART Lab Tunis Tunisia Kennesaw State Univ Marietta GA USA Anyang Normal Univ Anyang Peoples R China
Bi-clustering is one of the main tasks in data mining with many possible applications in bioinformatics, pattern recognition, text mining, just to cite a few. It refers to simultaneously partitioning a data matrix bas... 详细信息
来源: 评论
multi-objective evolutionary Neural Network to Predict Graduation Success at the United States Military Academy
Multi-objective Evolutionary Neural Network to Predict Gradu...
收藏 引用
Complex Adaptive Systems Conference (CAS) - Cyber Physical Systems and Deep Learning
作者: Lesinski, Gene Corns, Steven US Mil Acad West Point NY 10996 USA Missouri Univ Sci & Technol Rolla MO 65409 USA
This paper presents an evolutionary neural network approach to classify student graduation status based upon selected academic, demographic, and other indicators. A pareto-based, multi-objective evolutionary algorithm... 详细信息
来源: 评论
Methodologies for Solving Complex multi-objective Combinatorial Problems in Engineering: An evolutionary Approach
Methodologies for Solving Complex Multi-Objective Combinator...
收藏 引用
IEEE International Conference on Automatica (ICA-ACCA)
作者: Donoso, Yezid Univ Los Andes Syst & Comp Engn Dept Master Program Informat Secur Bogota Colombia
In real problems in Engineering, solving a problem is not enough;the solution of the problem must be the best solution possible. In other words, it is necessary to find the optimal solution. The solution is the best p... 详细信息
来源: 评论
Exploring the Pareto frontier using multi-sexual evolutionary algorithms: an application to a flexible manufacturing problem
Exploring the Pareto frontier using multi-sexual evolutionar...
收藏 引用
Conference on Applications and Science of Neural Networks, Fuzzy Systems, and evolutionary Computation V
作者: Bonissone, S Subbu, R GE Co Global Res Ctr Schenectady NY 12309 USA
In multi-objective optimization (MOO) problems we need to optimize or at least satisfy many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production ti... 详细信息
来源: 评论
multi-objective evolutionary fuzzy modeling for the docking maneuver of an automated guided vehicle
Multi-objective evolutionary fuzzy modeling for the docking ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Lucas, JM Martínez-Barberá, H Jiménez, F Univ Murcia Dept Informat & Commun Engn Murcia Spain
In many real-world applications, mobile robots require interacting with objects in their environments by means of performing docking tasks in a precise manner. In the application domain of this work, an Automated Guid... 详细信息
来源: 评论
A Classification Surrogate Model based evolutionary Algorithm for Neural Network Structure Learning
A Classification Surrogate Model based Evolutionary Algorith...
收藏 引用
International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Hu, Wenyue Zhou, Aimin Zhang, Guixu East China Normal Univ Sch Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc Shanghai Peoples R China
Designing neural networks often requires a large number of artificial intelligence experts. However, such manual processes are time-consuming and require numerous resources. In this paper, we try to search neural netw... 详细信息
来源: 评论
Parallel Dynamic multi-objective Optimization evolutionary Algorithm  22
Parallel Dynamic Multi-Objective Optimization Evolutionary A...
收藏 引用
22nd International Arab Conference on Information Technology (ACIT)
作者: Grid, Maroua Belaiche, Leila Kahloul, Laid Benharzallah, Saber Biskra Univ Comp Sci Dept LINFI Lab Biskra Algeria Batna 2 Univ Batna Algeria
multi-objective optimization evolutionary algorithms (MOEAs) are considered as the most suitable heuristic methods for solving multi-objective optimization problems (MOPs). These MOEAs aim to search for a uniformly di... 详细信息
来源: 评论