This paper investigates a novel multi-objective model for a permutation flow shop scheduling problem that minimizes both the weighted mean earliness and the weighted mean tardiness. Since a flow shop scheduling proble...
详细信息
This paper investigates a novel multi-objective model for a permutation flow shop scheduling problem that minimizes both the weighted mean earliness and the weighted mean tardiness. Since a flow shop scheduling problem has been proved to be NP-hard in a strong sense, a new hybrid multi-objectivealgorithm based on shuffledfrog-leapingalgorithm (SFLA) and variable neighborhood search (VNS) is devised to find Pareto optimal solutions for the given problem. To validate the performance of the proposed hybrid multi-objective shuffled frog-leaping algorithm (HMOSFLA) in terms of solution quality and diversity level, various test problems are examined. Further, the efficiency of the proposed algorithm, based on various salient metrics, is compared against two well-known multi-objective genetic algorithms: NSGA-II and SPEA-II. Our computational results suggest that the proposed HMOSFLA outperforms the two foregoing algorithms, especially for large-sized problems.
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possibl...
详细信息
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possible inventories. With the growth in customers' demand diversification, mixed-model assembly lines have gained increasing importance in the field of management. Among the available criteria used to judge a sequence in MMAL, the following three are taken into account: the minimization of total utility work, total production rate variation, and total setup cost. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a hybrid multi-objectivealgorithm based on shuffledfrog-leapingalgorithm (SFLA) and bacteria optimization (BO) are deployed. The performance of the proposed hybrid algorithm is then compared with three well-known genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed hybrid algorithm outperforms the existing genetic algorithms, significantly in large-sized problems. (c) 2007 Elsevier Ltd. All rights reserved.
Flow shop problems as a typical manufacturing challenge have gained wide attention in academic fields. In this paper, we consider a bi-criteria permutation flow shop scheduling problem, where the weighted mean complet...
详细信息
Flow shop problems as a typical manufacturing challenge have gained wide attention in academic fields. In this paper, we consider a bi-criteria permutation flow shop scheduling problem, where the weighted mean completion time and the weighted mean tardiness are to be minimized simultaneously. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a new multi-objective shuffled frog-leaping algorithm (MOSFLA) is introduced for the first time to search locally Pareto-optimal frontier for the given problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three distinguished multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSFLA performs better than the above genetic algorithms, especially for the large-sized problems.
暂无评论