To overcome the disadvantage that the standard leastsquaressupportvectorregression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...
详细信息
To overcome the disadvantage that the standard leastsquaressupportvectorregression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent *** solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two *** experiment was conducted on 900HC reversible cold *** performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
The deep-sea landing vehicle (DSLV) swarm exploration system is a novel platform for the detection of marine mineral resources. A high-precision cooperative localization system with Ultra-Short Baseline (USBL), Dopple...
详细信息
The deep-sea landing vehicle (DSLV) swarm exploration system is a novel platform for the detection of marine mineral resources. A high-precision cooperative localization system with Ultra-Short Baseline (USBL), Doppler Velocity Log (DVL), and electronic compass (EC) plays a vital role in the DSLV swarm exploration system. However, DVL measurements can be seriously interrupted due to the complex operational underwater environment, leading to unstable localization performance. The accuracy of the cooperative localization system could be further degraded by the persistent rubber track slippage during the vehicle's movement over the soft seabed. In this study, a data-driven cooperative localization algorithm with a velocity prediction model is proposed to improve the positioning accuracy of DSLV under track slippage. First, a velocity prediction model for DVL measurements is constructed using multi-output least squares support vector regression (MLSSVR), and a genetic algorithm (GA) is further employed to optimize the model's hyperparameters in order to enhance the robustness of the framework. Furthermore, the outputs of MLSSVR are fed into a DSLV position estimation framework based on the Unscented Kalman Filter (UKF) to improve localization accuracy in the presence of DVL failures. To validate the proposed method, the RecurDyn multibody dynamics simulation platform is applied for data synthesis, accounting for both the impact of the soft seabed and real-world motion simulation. The experimental results indicate that during DVL failure, the proposed algorithm can effectively compensate for the cooperative localization errors caused by track slippage, thereby significantly improving the accuracy and reliability of the DSLV cooperative localization system.
暂无评论