咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 multi-party ycom...
  • 1 篇 sfederated learn...
  • 1 篇 distributed lear...
  • 1 篇 privacy-preservi...

机构

  • 1 篇 state key labora...
  • 1 篇 pengcheng labora...
  • 1 篇 institute for ma...
  • 1 篇 zhongguancun lab...
  • 1 篇 institute of art...

作者

  • 1 篇 yongxin tong
  • 1 篇 zhiming zheng
  • 1 篇 yexuan shi
  • 1 篇 yi zhang
  • 1 篇 fengxia liu

语言

  • 1 篇 英文
检索条件"主题词=multi-party ycomputation"
1 条 记 录,以下是1-10 订阅
排序:
A survey on federated learning:a perspective from multi-party computation
收藏 引用
Frontiers of Computer Science 2024年 第1期18卷 93-103页
作者: Fengxia LIU Zhiming ZHENG Yexuan SHI Yongxin TONG Yi ZHANG Institute of Artificial Intelligence and Key Laboratory of Mathematics Informatics Behavioral Semantics Beihang UniversityBeijing 100191China State Key Laboratory of Software Development Environment and Advanced Innovation Center for Future Blockchain and Privacy Computing Beihang UniversityBeijing 100191China Pengcheng Laboratory Shenzhen 518055China Zhongguancun Laboratory Beijing 100190China Institute for Mathematical Sciences and Engineering Research Center of Financial Computing and Digital Engineering Renmin University of ChinaBeijing 100872China
Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw *** enhance privacy in federated learning,multi-party computation ... 详细信息
来源: 评论